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Abstract

The inflexible nature of traditional computer networks has led to tightly-integrated

systems that are inherently difficult to manage and secure. To remedy this, new

designs have moved low-level network control from hardware into software creating

software-defined networks (SDN) that are centrally controlled, programmable, and

dynamic. However, augmenting an existing network with these enhancements can be

expensive and complex with unpredictable results. This research investigates solutions

to these problems through hardware and software.

For hardware, it is hypothesized that an add-on device, or “shim” could be used

to make a traditional switch behave as an OpenFlow SDN switch while maintaining

reasonable performance. A cost-saving design is proposed to enable experimentation

on existing networks and the ability to quantify benefits of upgrading before investing.

A design prototype is implemented, tested, and found to cause approximately 1.5%

reduction in throughput for one flow and less than double increase in latency, showing

that such a solution may be feasible for gaining insight into the value of network

upgrades before committing to the costs.

For software, it is hypothesized that a new design built on event-loop and reactive

programming may yield a controller that is both higher-performing than existing

research-based controllers and easier to program. The contribution is in three blocks

that build on each other: a schema, a library, and a framework. The schema provides

a means to standardize OpenFlow application programming in any language, an

important step in creating a standardized northbound interface and in making network

applications portable between platforms. The library node-openflow extends high-

performance message encoding and decoding to the Node.js platform. The framework

iv



rxdn applies the reactive programming paradigm in a novel way to create network

applications that are functional, modular, and intuitive.

The library and framework are benchmarked using the popular Cbench tool and

compared with peer projects. The library node-openflow is found to have performance

approaching that of professional controllers, however it exhibits higher variability in

response rate. The framework rxdn is found to exceed performance of two comparable

controllers by at least 33% with statistical significance in latency mode with 16

simulated switches, but is slower than the library node-openflow or professional

controllers (e.g., Libfluid, ONOS, and NOX).

Collectively, this work enhances the tools available to researchers, enabling experi-

mentation and development toward more sustainable and secure infrastructure.

v
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PROGRESSIVE NETWORK DEPLOYMENT, PERFORMANCE, AND CONTROL

WITH SOFTWARE-DEFINED NETWORKING

I. Introduction

1.1 Background

Software-Defined Networking (SDN) has become a popular vehicle for research

in recent years, with its own dedicated conferences, books, and coverage by top-tier

journals. In its 2014 list of cyber research and development challenges, 24th Air

Force specifically asked for investigations into the security implications of deploying

SDN across the enterprise network. The Air Force Research Laboratory (AFRL)

Rome Laboratory, the National Security Agency (NSA) Research Directorate, and

the Laboratory for Telecommunication Sciences (LTS) all have ongoing research and

have expressed a desire to work with other researchers in this area.

The field of SDN-related research is broad, but the protocols, hardware, and tools

to develop, research, and use such networks are limited and immature. The resources

are also costly, as the hardware and software which support SDN are still specialized

compared to traditional network hardware. Even once the hardware and software are

procured, it is still a difficult undertaking to properly program applications to control

the network in line with operational needs.

These factors contribute to slowed adoption of SDN technologies across the industry.

As SDN shows the most promise for future networking advancements, slowed SDN

adoption translates into stagnation in research innovation.
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This work seeks to provide resources to promote SDN adoption. Two areas of

particular interest are first, lowering the barrier to entry for SDN and second, improving

the means of its deployment, performance, and scalability.

1.2 Problem Statement

SDN is a tool that can be used to solve problems related to networking; however,

SDN itself introduces a host of new problems. Some of the key problems include:

1. Hardware: Upgrading hardware to support SDN is expensive and risky, as it is

difficult to understand the effects of switching an existing network to SDN in

advance.

2. Controllers: There is a lack of easy-to-program, high-performance controller

software suitable for testing and research.

3. Applications: Existing network control applications are complex and not modu-

lar.

The problem is the combination of these hurdles make it prohibitively difficult for

network researchers and system administrators to adopt SDN.

1.3 Research Goals and Hypotheses

The core problem that this work seeks to address is improving the resources

available to ease and encourage adoption of SDN. Enhancing the tools available will

enable experimentation and development of more sustainable and secure network

infrastructure.
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The key problems listed above are explored separately with the following hypothe-

ses:

1. Hardware: It is possible to create an external device that could be added to

existing network infrastructure that would be inexpensive (relative to the cost

of new hardware) and perform well enough to enable experimentation and

step-by-step adoption in SDN.

2. Controllers: It is possible to use newer programming paradigms to create a

library—the foundation of a controller—that will be easier to program and

higher performing than existing research-oriented controllers.

3. Applications: It is possible to adopt programming paradigms from web appli-

cation development to enable intuitive and modular programming of control

applications for an SDN controller.

1.4 Approach

Again, the approach is broken across the three domains:

1. Hardware: Real network hardware is used to design, implement, and test the

best-case performance of such an external device that would allow SDN functions

to be added to existing hardware. The system is tested in terms of latency

increase and bandwidth reduction versus a switch without the add-on device.

2. Controllers: A new, fully-functional OpenFlow library is written and tested

against its peers using a popular benchmarking tool with n = 36 replications.

The results are analyzed graphically, with Welch’s F test, and with post hoc

methods, and shown to be statistically significant.
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3. Applications: A new framework for developing network control applications in a

consistent, modular, and intuitive way is designed. Its performance is measured

alongside and in the same way as the library developed above.

1.5 Assumptions/Limitations

For all three aspects, while the term SDN is used broadly, the designs and programs

developed focus only on the OpenFlow protocol. While there are other suitable

protocols, OpenFlow is currently the representative and accessible (non-proprietary)

protocol for this work. The concepts would translate to most other SDN-related

protocols, but not without porting all code.

Domain-specific assumptions and limitations include:

1. Hardware: The design tested is a minimal prototype to determine the best-case

for increased latency and decreased bandwidth due to the addition of such a

device to a traditional switch. Therefore, the device designed does not implement

OpenFlow, but makes the connected switch behave as an OpenFlow switch that

has been preconfigured with forwarding rules by an OpenFlow controller. It is

assumed that such a design may be useful in low-to-medium traffic environments,

test labs, and so on, but will not hold up to high levels of network traffic.

2. Controllers: The library implements OpenFlow protocol versions 1.0 and 1.3 only.

Version 1.0 is needed for compatibility with the benchmarking tool (Cbench),

and 1.3 is currently the most widely-adopted version. Professional controllers

are expected to support these and more, including non-OpenFlow protocols.

3. Applications: As the framework is developed on top of the library, the same

assumptions and limitations apply.
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1.6 Research Contributions

Contributions by domain include:

1. Hardware: A design for a device and configuration for almost any traditional

switch is developed such that the device will usurp all control from the switch,

allowing that system to behave like an OpenFlow switch. Performance measure-

ments show that bandwidth reduction for a single host is minimal and additional

latency is lower than expected, with approximately 1.5% reduction in throughput

less than double increase in total latency.

2. Controllers: A fast OpenFlow library is contributed that is easy to develop for

in a variety of accessible languages and is shown to perform significantly better

than several existing controllers.

3. Applications: A novel framework is contributed that features single-threaded pro-

gramming concepts with familiar language semantics while exhibiting moderately

fast performance and highly modular design.

1.7 Overview

Chapter II provides a background on SDN and related technologies relevant to

this work.

The foundation of computer networking is hardware. The capabilities and limita-

tions of hardware dictate what is possible at all layers of the protocol stack. SDN is

a new paradigm for networking that permeates the entire stack, even requiring new

hardware. Restructuring an enterprise network to transition to SDN can be extremely

difficult even if the hardware is already capable. The added costs and difficulty of

replacing hardware simultaneously with a restructure puts an SDN transition out of

the realm of possibility for all but the best-resourced organizations. Innovation is
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needed to overcome these difficulties and bring the advantages of SDN to existing

networks. Chapter III explores the challenge of transitioning a traditional network to

a modern SDN architecture in a controlled, non-disruptive manner.

From the other end of the network stack, SDN controllers are high-level programs

that control the behavior of network devices. Existing controllers tend to fall into

one of two categories: commercial controllers designed for enterprise use and research

controllers created by graduate students. Those in the former category tend to be

high performing, but costly and difficult to understand and manage. Those in the

latter category tend to be flexible, but lacking in performance and limited to a specific

research objective. There is a void left between these categories, and Chapters IV-VI

explore the challenges of creating a new controller that is general-purpose, flexible,

research-oriented, easy-to-understand, and yet performs well under load.

Chapter IV contributes a schema for the OpenFlow protocol that provides for

message creation and validation, allowing verified, interoperable interfaces that are

language- and platform-agnostic. Chapter V explains the choice of language and

platform as well as the design, testing, and performance of the new OpenFlow

protocol library. Chapter VI describes the design of the controller framework, its

modularity, distribution, testing, and performance results. Chapter VII covers the

testing methodology and results for performance testing of the library and framework

separately and against other similar projects.

Chapter VIII concludes by reviewing the current state of SDN and motivation

for this work. It also restates research conclusions, contributions, limitations, and

recommendations for future work.
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II. Software-Defined Networking

2.1 Introduction

This chapter provides an introduction to SDN, including its core principles, precur-

sors, and components. The definition and terminology of SDN are given in Section 2.2,

with motivations for SDN in Section 2.3. A few related works that preceded SDN are

described in Section 2.4, with OpenFlow explained in Section 2.5.

2.2 Definition and Terminology

2.2.1 Definition.

SDN is a popular topic both in research and industry, with hundreds of papers and

products reiterating basic concepts of the architecture. As a result, the terminology is

not always consistent. This section briefly covers these introductory concepts using

the most popular terminology and widely-accepted concepts.

A software-defined network is typically defined as a network in which the manage-

ment, control, and data planes have been separated. This definition implicitly refers

to the network hardware on which these functions exist, like routers and switches,

collectively called forwarding devices. This separation enables forwarding devices to

be simplified, programmable, and centrally-controlled.

2.2.2 Traditional Networks.

In a traditional network, forwarding devices contain the logic for rapidly transferring

data (the data plane), the logic for determining how data is to be forwarded (the

control plane), and the interfaces or protocols to specify configuration and policy (the

management plane). Figure 1 depicts these three planes and the interactions between

them.
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2.2.2.1 Data Plane.

The data plane is implemented in hardware as an application specific integrated

circuit (ASIC). As an ASIC, its functions are relatively simple but extremely fast. Its

job is to move data through the device and on to its destination according to rules in

its forwarding table. A set of related traffic is referred to as a flow. Any flows not

covered by the forwarding table are redirected to the control plane.

Forwarding table

Management planeControl plane

Data plane

Control and routing 

protocols

SNMP

Unknown packets
control packets

Statistics, Status

Configuration

Data in

Data out

Program 
forwarding

table Policy

Figure 1. The three network planes and the interactions between them [1]

2.2.2.2 Control Plane.

The control plane is implemented with a general-purpose processor, making it

much slower than the data plane, but much more flexible and able to perform complex

computations. It is responsible for populating the forwarding table, determining

proper actions for flows not handled by the forwarding table, and reporting status

and statistics to the management plane.
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2.2.2.3 Management Plane.

The management plane consists of any methods by which a network administrator

specifies configuration and policy to the forwarding device. This includes the command-

line interface (CLI) and network management protocols. Regardless of method, this

configuration is relatively static; that is, it does not dynamically update with changing

network conditions or other inputs.

Several network management protocols were developed before the advent of SDN,

a few of which are described in Section 2.4. Being part of the management plane,

these protocols may query and configure certain runtime parameters of the devices,

but do not operate directly on flows like the control plane.

2.2.3 Software-Defined Networks.

One of the distinct characteristics of SDN is the separation of data and control

planes such that control and management of the network can be accomplished inde-

pendently of the forwarding devices [1]. This new architecture enables centralization

of control, programmatic control, and simplification of forwarding devices.

2.2.3.1 Data Plane in SDN.

The forwarding devices communicate with the controller via a standardized protocol,

which is called the southbound protocol (or southbound interface), and these links are

normally illustrated below the controller (hence the term “south”). These devices can

be much simpler than a traditional switch or router, as they do not require forwarding

algorithms or routing protocols. Instead, forwarding devices maintain a flow table that

is populated by the controller. Most forwarding devices available today are hybrid

devices, meaning they contain all the logic of a traditional device with SDN functions

added.
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2.2.3.2 Control Plane in SDN.

In SDN, the control plane is removed from forwarding devices, implemented in

software on server (or set of servers), and centralized [2]. One SDN controller is

responsible for controlling many forwarding devices. The controller is the focal point

of the network, and in diagrams is normally drawn in the center, as shown in Figure 2,

with applications above and forwarding devices below. More sophisticated controllers

are sometimes called “network operating systems.” This title implies analogies to

computer operating systems, as the forwarding devices are like the computer hardware,

the interfaces to the forwarding devices are like device drivers, and the management

applications that run on the controller are like computer applications running on an

operating system.

2.2.3.3 Management Plane in SDN.

The management plane contains the network applications that program or configure

the controller. The interface between the controller and these applications is referred to

as the northbound interface and is usually a well-documented Application Programming

Interface (API) specific to the controller.

2.3 Motivation

By leveraging this new architecture, networks can be made more dynamic to chang-

ing conditions, less costly to acquire and maintain, and more flexible to experimentation.

Traditional networking, while effective and time-tested, has not significantly changed

in decades. This stagnation in innovation has led to increasingly complex networks.

Benson et al., in attempting to quantify network complexity, observe that university

and enterprise networks tend towards higher complexity as the network grows over

time, which “generally leads to significant manual intervention when managing net-
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Plane Components

App 1 App 2 App 3Management

Control Controller

Switch Switch SwitchData

Northbound Interface

Southbound Interface

Figure 2. Typical SDN architecture [adapted from 2]

works”, resulting in networks that “are more prone to failures, and are difficult to

upgrade and manage” [3].

Traditional networking is highly distributed. Each switch and router has its own

set of networking protocols and algorithms to determine proper forwarding of frames or

packets. To be high-performing, configurable, and independent, each device contains an

enormous amount of complexity. Because devices are independent, network operators

must perform the manually-intensive task of writing configuration files specific to

each device, connecting to each device individually, and loading and testing those

configurations. Depending on a number of factors (e.g., routing protocols, active

subnets), a small change to one portion of a network may require connecting to many

devices across the larger network to update configurations, as depicted in Figure 3.

While newer protocols and technologies can ease these transitions, Benson et al.

found that due to costs, these newer technologies are often not available to network

administrators [3]. By centralizing the control plane, SDN advocates argue that the

new architecture is capable of eliminating these classes of problems.
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FIG. 9.1

Ensuring consistent policy configuration.

ground up to comprehend and manage a huge number of devices. In addition, this centralization drives
more commonality between the devices. The task of managing large numbers of devices is simplified
as a direct result of this homogeneity. This simplification of network configuration is one of the major
operational cost savings brought about by SDN.

One common issue with large networks today is the difficulty in maintaining consistency across all
the devices, which are part of the infrastructure. Fig. 9.1 shows a simple example of the comparison of
autonomous devices individually and manually configured versus common policy distributed via flow
rules from a central controller. The trivial case depicted in the diagram is compounded by orders of
magnitude in real-life networks. Keeping configuration of policy consistent simply cannot be done by
purely manual means. For some time now, sophisticated network management tools have existed that
purport to provide centralized configuration and policy management. However, as we have described
in previous chapters, these tools have only realized marginal success. They are generally based on
a model of creating a driver that abstracts away vendor and device differences. These tools attempt
to standardize at such a high level that the actual low-level vendor and device differences pose a
constant challenge. This model has not been able to scale with the amount of change that is endemic in
networking. SDN approaches configuration in a radically different way. Configuration is performed
in a standard but entirely new and more fine-grained fashion, at the flow level. The configuration
is based on the fundamental construct of the flow, which is shared by all networking devices. This
permits configuration by a common protocol such as OpenFlow. Rather than trying to band-aid over a
configuration morass with a system of the aforementioned drivers, this SDN approach has the ability
to scale with the evolution of the network and to implement consistent network-wide configuration and
policy. Central policy storage falls out naturally from the centralized controller architecture of SDN.

Figure 3. Network management: traditional versus SDN [1]

The growing costs of network hardware are also a target problem for SDN. In the

SDN architecture, traditional switches and routers become simple forwarding devices,

greatly reducing their complexity, development timelines, and costs. By moving to a

standardized set of features and protocols, entrenched industry leaders are starting

to face competition from small specialists providing incredible value for customers

on commodity hardware. These cost gains were first established in data centers, as

explained in [4]: “the cost of hiring engineers to write sophisticated control programs

to run over large numbers of commodity switches proved to be more cost-effective than

continuing to purchase closed, proprietary switches that could not support new features

without substantial engagement with the equipment vendors.” This historical survey

goes on to explain that the desire of such customers to break free from overpriced,

locked-in platforms provided the initial momentum to make SDN a powerful trend in

the industry.
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2.4 Precursors to SDN

Two main research themes in networking predated and contributed to the develop-

ment of SDN: network programmability and separation of control and forwarding.

2.4.1 Active Networking.

In the mid-to-late 1990s, a technology called Active Networking (AN) was developed

as a joint research effort among research universities and the Defense Advanced

Research Projects Agency (DARPA) [5]. The goals of AN were to increase the rate

of evolution and customizability of networks by making them programmable. AN

was never widely deployed or adopted by the community at large, in part due to its

complexity. One of the proposed implementations of the technology was to have small,

executable bits of code called “capsules” that would be written by network users

in Java or Tcl and executed dynamically by switches or routers in the network [6].

Another was via an out-of-band API. With either approach, instead of passively

forwarding data, the network would become a flexible, programmable mechanism.

A strong use case for AN was the consolidation of the functions of ad hoc network

devices, including firewalls, proxies, and gateways to simplify network architecture

and reduce the administrative burden. In this way, the foundational ideas and use

cases of AN are similar to those of SDN.

SDN also provides network programmability, but by different means [4]. Instead

of programming functionality to be executed dynamically on routers or switches,

programmatic control in SDN is achieved at the centralized controller that can

dynamically affect forwarding device behavior. Rather than making distributed

devices more complex, as in Active Networking, SDN allows them to be greatly

simplified.
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2.4.2 Management Plane Protocols.

The Internet Engineering Task Force (IETF) has released a series of memoranda

in their Request for Comments (RFC) format which describe protocols and data

formats for monitoring and controlling networked devices. While these operate on the

management plane and not the control plane, they are notable as SDN precursors

for attempting to solve the need for more centralized control of network devices by

providing some degree of network programmability. In some cases, they provide a

foundation for SDN systems or an alternative means of control by multilingual SDN

controllers.

Simple Network Management Protocol (SNMP) was first developed by the IETF as

RFC 1067 in 1988 [7]. This protocol has been extended over the years and remains one

of the most ubiquitous networking protocols in use today. The protocol was initially

developed to provide monitoring and control features to any network connected device,

including servers, but a lack of vendor support has mostly relegated it to router

monitoring roles [8].

The Network Configuration Protocol (NETCONF) was developed by an IETF

working group in 2006 as RFC 4741 to be a modern and extensible replacement for

SNMP [9]. The OpenFlow Configuration and Management Protocol (OF-CONFIG),

published in 2011, is built on top of NETCONF [10].

Open vSwitch (OVS) is a popular software switch implementation which supports

OpenFlow, but provides its own management plane protocol, Open vSwitch Database

(OVSDB), which is independent from OpenFlow [11, 12].

2.4.3 ForCES.

Some of the earliest work in centralized network control goes back to the design

of telephony networks and Signalling System No. 7 in the 1970s [13]. In 2004, an
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IETF working group developed Forwarding and Control Element Separation (ForCES),

which contributed a standardized interface between separated control and data planes

to make each more flexible to change. By making the two planes dependent upon

a standard interface instead of locked to each other, it was thought that ForCES

would enable rapid innovation of both [14]. While there was research that built on

top of ForCES, it failed to catch on with device vendors, and therefore never made it

beyond research prototypes. Around 2008, OpenFlow was developed by a joint team

at Stanford and Berkeley.

2.5 OpenFlow

The OpenFlow team learned the lessons of Active Networks, ForCES, NETCONF,

and other projects that failed to catch on, and developed the first open interface

between data and control planes to be widely and fully adopted by vendors [4].

OpenFlow is currently the most popular “southbound interface” protocol for SDN,

the means by which a controller communicates with and configures forwarding devices.

The three main components of an OpenFlow-based network include its hardware,

software, and the protocol itself.

2.5.1 OpenFlow Hardware.

OpenFlow was first proposed in 2008 as a compromise to bridge the gap between

researchers and vendors. Researchers needed a mechanism for low-level flow control

on real switching hardware to be able to rapidly develop and test new protocols and

architectures. Vendors, however, were understandably reluctant to expose the inner

workings and trade secrets of their devices, which they saw as contributing greatly

to their hard-earned market shares. Determined to avoid the stalemate of ForCES,

OpenFlow was designed to expose the minimum-needed control in a platform-agnostic
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way without requiring the opening of vendors’ hardware. This allowed greater steps

in research, as prior options were all unsuitable: “the commercial solutions are too

closed and inflexible, and the research solutions either have insufficient performance

or fanout, or are too expensive” [15].

An OpenFlow switch provides at least one flow table and a control channel to at

least one controller (via TCP or TLS) [15]. Figure 4 depicts the basic components of

an OpenFlow switch and its control channel to an external OpenFlow controller.

OpenFlow Switch Specification Version 1.3.5

1 Introduction

This document describes the requirements of an OpenFlow Logical Switch. Additional information
describing OpenFlow and Software Defined Networking is available on the Open Networking Foundation
website (https://www.opennetworking.org/). This specification covers the components and the basic
functions of the switch, and the OpenFlow switch protocol to manage an OpenFlow switch from a
remote OpenFlow controller.

Controller

Flow 
Table

Flow 
Table

OpenFlow 
Channel

...
Pipeline

OpenFlow Switch

OpenFlow Protocol

Group 
Table

Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table, which perform packet
lookups and forwarding, and one or more OpenFlow channels to an external controller (Figure 1). The
switch communicates with the controller and the controller manages the switch via the OpenFlow switch
protocol.

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and proactively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions to apply
to matching packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables of the pipeline (see
5.1). Flow entries match packets in priority order, with the first matching entry in each table being
used (see 5.3). If a matching entry is found, the instructions associated with the specific flow entry are
executed (see 5.9). If no match is found in a flow table, the outcome depends on configuration of the
table-miss flow entry: for example, the packet may be forwarded to the controllers over the OpenFlow
channel, dropped, or may continue to the next flow table (see 5.4).

9 © 2015; The Open Networking Foundation

Figure 4. The basic components of an OpenFlow switch [16]

Flow tables are configured by the controller and contain flow entries. Each flow

entry specifies a match that ties the entry to the header fields of a given flow. For

example, one entry may match any flows where the first packet is destined to a

particular Media Access Control (MAC) or Internet Protocol (IP) address, while

another may match on the source TCP port number. Each flow entry may also provide

counter mechanisms for the controller to query and gain statistical information about

the number of packets matching each flow entry. Finally, each entry contains an
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action to be performed on matching flows, such as forwarding the packets out of a

given switch port, sending matching packets to the controller, or (in versions 1.1 and

later) specifying an alternative flow table pipeline. The control channel protocol is

the OpenFlow switch protocol itself [16].

OpenFlow 1.0 (2009) and earlier versions specified a single flow table to be sup-

ported in hardware, with 1.1 (2011) and later providing the option for multiple tables

to be supported by hardware. Multiple tables, when supported by the hardware, act as

a one-way pipeline to provide more sophisticated flow control and better performance.

Figure 5 depicts a pipeline of n flow tables inside an OpenFlow switch, with each

packet that passes through the switch potentially picking up new metadata and actions

at each table. At the end of the pipeline, any actions attached to that packet are

applied.
OpenFlow Switch Specification Version 1.3.5
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Figure 2: Packet flow through the processing pipeline.

5.1 Pipeline Processing

OpenFlow-compliant switches come in two types: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-
only switches support only OpenFlow operation, in those switches all packets are processed by the
OpenFlow pipeline, and can not be processed otherwise.

OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching opera-
tion, i.e. traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing, IPv6 routing...),
ACL and QoS processing. Those switches should provide a classification mechanism outside of Open-
Flow that routes traffic to either the OpenFlow pipeline or the normal pipeline. For example, a switch
may use the VLAN tag or input port of the packet to decide whether to process the packet using one
pipeline or the other, or it may direct all packets to the OpenFlow pipeline. This classification mech-
anism is outside the scope of this specification. An OpenFlow-hybrid switch may also allow a packet
to go from the OpenFlow pipeline to the normal pipeline through the NORMAL and FLOOD reserved
ports (see 4.5).

The OpenFlow pipeline of every OpenFlow Logical Switch contains one or more flow tables, each flow
table containing multiple flow entries. The OpenFlow pipeline processing defines how packets interact
with those flow tables (see Figure 2). An OpenFlow switch is required to have at least one flow table,
and can optionally have more flow tables. An OpenFlow switch with only a single flow table is valid,
in this case pipeline processing is greatly simplified.

16 © 2015; The Open Networking Foundation

Figure 5. OpenFlow packet matching through multiple tables [16]

Figure 6 is a flow chart showing the order in which matches are examined for each

packet and table, and if a match exists, how updates may occur to possibly modify

the packet before forwarding it. Figure 6 should be viewed as the logic that occurs

when a packet is sent to any of the tables of Figure 5. The first decision in Figure 6 is

to find whether there exists a match for this particular packet in the table. If there is

a match, any actions are applied, and the packet may continue to be processed by

other tables if a “goto-table” statement exists. If there is no match in the current

table, the last decision of the flow chart is to check the table for a miss flow entry. The
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miss flow entry is a catchall action that matches any unmatched packet. Note that

the default action if no match exists is to drop the packet; an unconfigured OpenFlow

switch, by specification, forwards no traffic.

OpenFlow Switch Specification Version 1.3.5

• cookie: opaque data value chosen by the controller. May be used by the controller to filter flow
entries affected by flow statistics, flow modification and flow deletion requests. Not used when
processing packets.

• flags: flags alter the way flow entries are managed, for example the flag OFPFF_SEND_FLOW_REM
triggers flow removed messages for that flow entry.

A flow table entry is identified by its match fields and priority: the match fields and priority taken
together identify a unique flow entry in a specific flow table. The flow entry that wildcards all fields
(all fields omitted) and has priority equal to 0 is called the table-miss flow entry (see 5.4).

A flow entry instruction may contain actions to be performed on the packet at some point of the pipeline
(see 5.12). The set-field action may specify some header fields to rewrite. Each flow table may not
support every match field, every instruction, every action or every set-field defined by this specification,
and different flow tables of the switch may not support the same subset. The table features request
enables the controller to discover what each table supports (see 7.3.5.5).

5.3 Matching
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Figure 3: Flowchart detailing packet flow through an OpenFlow switch.

On receipt of a packet, an OpenFlow Switch performs the functions shown in Figure 3. The switch starts
by performing a table lookup in the first flow table, and based on pipeline processing, may perform
table lookups in other flow tables (see 5.1).

Packet header fields are extracted from the packet, and packet pipeline fields are retrieved. Packet
header fields used for table lookups depend on the packet type, and typically include various protocol
header fields, such as Ethernet source address or IPv4 destination address (see 7.2.3). In addition to

19 © 2015; The Open Networking Foundation

Figure 6. Flow chart for OpenFlow’s Match, Action, and Instruction [16]

2.5.2 OpenFlow Protocol.

OpenFlow protocol versions are generally released every 12–18 months, as shown in

Table 1, and the number of header field matches and message types has been steadily

increasing since version 1.0. Each protocol specification starts by defining the concepts

and requirements for a complying switch. Certain features are optional, and these are

queryable by the controller through various features-request messages. Some examples

of optional features include multiple flow tables, certain virtual switch ports (e.g.,
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to specify “normal” or non-OpenFlow based processing of a matching flow), certain

match fields (e.g., pushing and popping Virtual Local Area Network (VLAN) tags

and Multiprotocol Label Switching (MPLS) headers is supported but not required),

and certain counters for statistics gathering by the controller. A controller that tries

to use an optional feature that is not implemented should be sent a corresponding

Error message by the switch.

Table 1. OpenFlow switch protocol versions [derived from 16]

OpenFlow version Match fields Messages Release date

1.5.1, 1.4.1, 1.3.5 36, 35, 30 45, 42, 40 April 2015
1.5.0 36 45 December 2014
1.3.4 30 40 March 2014
1.3.3 30 40 September 2013
1.4.0 35 42 October 2013
1.3.2 30 40 April 2013
1.3.1 30 40 September 2012
1.3.0 30 40 June 2012
1.2 26 36 December 2011
1.1.0 24 15 February 2011
1.0.0 22 12 December 2009

The protocol specifies the initial handshake procedure whereby a controller and

switch establish a connection and negotiate their highest common operating version

by way of Hello messages. After session establishment and initial configuration, the

most important messages are PacketIn, PacketOut, and FlowMod. While these can vary

in their implementation from version to version, each version has and makes extensive

use of them to provide SDN-style control by the controller over the switch. The switch

may notify the controller of a new flow with a PacketIn message. This message includes

details about the packet, including a unique transaction ID (xid), header fields, and

possibly all or part of the actual frame. A buffer ID may be given that the controller

may use to reference the particular packet in future messages. Similarly, the controller

may send a PacketOut message to the switch in order to have the switch send the
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packet out one of its ports. This PacketOut message may include the full packet itself

or a buffer ID referring to a previous packet stored in the switch’s memory, as well

as other information like the output port or pipeline the packet should be processed

through. The PacketOut message is shown as a C struct in Figure 7 and as a byte

diagram in Figure 8.

1 /* Send packet (controller -> datapath). */

2 struct ofp_packet_out {

3 struct ofp_header header;

4 uint32_t buffer_id; /* ID assigned by datapath (OFP_NO_BUFFER if none). */

5 uint32_t in_port; /* Packets input port or OFPP_CONTROLLER. */

6 uint16_t actions_len; /* Size of action array in bytes. */

7 uint8_t pad[6];

8 struct ofp_action_header actions[0]; /* Action list - 0 or more. */

9 /* The variable size action list is optionally followed by packet data. */

10 /* This data is only present and meaningful if buffer_id == -1. */

11

12 /* uint8_t data[0]; */

13 /* Packet data. The length is inferred from the length field in the header. */

14 }

Figure 7. PacketOut as a C struct [16]

The most interesting message is the FlowMod, short for modify flow entry, which is

shown as a byte diagram in Figure 9. Rather than specify a single packet, this message

is sent from the controller to the switch to match any number of header fields or other

packet metadata, and includes actions or instructions (depending on the version) of

how such matching flows should be processed by the switch. The FlowMod may also

indicate a soft or hard timeout period, indicating when the switch should remove the

rule from its tables after a given period of inactivity or after an absolute period from

the rule installation, respectively.

These simple messages provide the basic building blocks upon which all OpenFlow

control is based, allowing centralized and programmatic control of thousands of

commercially-available networking products today.
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Figure 8. OpenFlow PacketOut with output action, version 1.0 [derived from 16]

2.5.3 OpenFlow Software.

2.5.3.1 The role of the controller.

OpenFlow software includes compatible controllers and any applications written for

such controllers. In SDN, a controller is a focal point of the architecture. In its simplest

form, it receives a policy, model, or set of instructions from a network administrator

or network application, translates these into rules, and installs these rules on network

switches. In more complex instances, the controller forms a distributed layer over the

physical network and provides a unified, but logically centralized view of the network

to network applications. While many research controllers are built specifically for

OpenFlow, many commercial and enterprise controllers support other southbound

protocols and therefore tend to provide abstractions over OpenFlow details at the

northbound interface. Either way, as shown in Figure 2, the controller itself represents

some form of abstraction from the raw forwarding devices (data layer) to the network
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Figure 9. OpenFlow FlowMod, version 1.0 [derived from 16]
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applications that define the network policy (management layer). This is summarized

well in [17]:

Because the control platform simplifies the duties of both switches (which
are controlled by the platform) and the control logic (which is implemented
on top of the platform) while allowing great generality of function, the
control platform is the crucial enabler of the SDN paradigm.

There is currently no standard northbound interface, though some have been

proposed (e.g., [18]). Some researchers have even argued against the development of

such a standard, saying such constraints will provide little benefit and hamper innova-

tion [19]. Consequently, there is little-to-no portability among network applications

from one controller to another, and therefore selection of a controller for a particular

network demands a comprehensive survey. There is no one way to build a controller,

and many open- and closed-source implementations have been defined.

2.5.3.2 First controllers.

NOX [20] and POX [21] were two of the first controllers, and both expose a simple

API in C++ and Python, respectively. The programmer uses this API to describe

the desired network behavior as a set of functions. These functions are called by the

runtime when certain types of messages are received from a switch, and used to react

to changing conditions of the network. These controllers were developed at the same

time as OpenFlow at Stanford and Berkeley to prove the feasibility and explore the

consequences of the SDN architecture [22].

2.5.3.3 Research controllers.

Frenetic-OCaml [23] and Pyretic [24] also use a runtime, but instead of a traditional

API, they expose a domain-specific language (DSL) to the programmer in OCaml and

a subset of Python, respectively. Therefore, the programmer defines network behavior
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as a set of compositions in that DSL. The runtime translates these abstract policies

to specific flow modification messages that are sent to the switches connected to the

controller. From the programmer’s viewpoint, the network devices are abstracted

into one giant switch [25]. These two controllers are ongoing, joint research efforts at

Cornell and Princeton.

2.5.3.4 Enterprise controllers.

Beacon [26], Floodlight [27], and OpenDaylight [28] are Java-based controllers that

target an enterprise network environment. As Java is considered to be a language of

high developer productivity, the APIs of these controllers are written with developer

ease-of-use in mind. OpenDaylight can support various southbound protocols as

well as northbound APIs. Besides OpenFlow, southbound protocols may include

NETCONF, SNMP, OVSDB, and even proprietary CLI commands and protocols.

Similarly, OpenDaylight’s northbound APIs support many different programming

languages and network protocols.

2.5.3.5 Controller goals.

The controllers listed above were all designed with specific goals in mind. NOX

and POX were created as the first control programs for the developing OpenFlow

protocol. Frenetic and Pyretic were developed to further the notions of modularity

and composition for network control, and the Java-based controllers were developed

to provide enterprise-ready, high-performance controllers.

2.5.3.6 Controller themes.

Upon reviewing the various types of controllers, there are a few themes to notice.

Research controllers tend to be specialized to a specific area of research (e.g., domain-

24



specific languages) and are generally low-performing. Enterprise controllers tend

to place a premium on performance, but are more complex and difficult to modify.

In most controllers, much of the OpenFlow protocol specifics are abstracted away.

Furthermore, learning one controller does not translate into sufficient knowledge

necessary to effectively use another. In other words, programming a routing algorithm

in POX, Frenetic, and Floodlight result in vastly different programs, each requiring a

substantial investment in learning the particularities of the chosen platform.
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III. OpenFlow Shim: Reducing Costs and Disruptions in
Hardware Upgrades

3.1 Introduction

While SDN is an evolution of networking that came from research dating back

over 20 years, its most widely-used implementation today is through the OpenFlow

protocol, which facilitates communication between the controller and switch [4]. Early

versions of OpenFlow were very simple, supporting only a few of the typical layer 2

and 3 protocol header fields, and the OpenFlow agents running on switch hardware

were crude [15]. These agents were created as custom firmware for select models of

traditional switches.

This approach worked as a research vehicle and helped turn the industry in the

direction of SDN because it required little or no modification to hardware. However,

as SDN concepts have advanced, the community has realized that status quo hardware

will not be sufficient.

The prototype design presented here begins the exploration of custom hardware

by augmenting an existing hardware switch with newer, SDN-enabling features. The

goals are to ascertain if such an idea performs well enough for implementation, such

that it mitigates the difficulty of moving an existing network to an SDN architecture.

A secondary interest is to explore dynamic offload of network processing from an

SDN controller to its switches. This requires custom switch hardware, as existing

devices have no such capabilities. The goal will to be explore how the existing SDN

architecture could be improved by rethinking the allocation of computing resources in

a network.

This design represents a working foundation upon which many other projects can

be built. It is also general enough that it can easily be ported to other development
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boards, including field-programmable gate array (FPGA) boards from other vendors

(e.g., the Altera Stratix 10).

3.2 Background

Upgrading an enterprise network to leverage SDN can be difficult and expensive.

The most widely-used SDN protocol, OpenFlow, only reached its 1.0 release in 2011 [4]

and has only been available in commercial switches since 2012. Furthermore, the

protocol itself is rapidly evolving, with other SDN protocols under active develop-

ment. These factors add cost and risk to SDN upgrades, which hinder adoption and

growth. Moreover, legacy networking equipment may still provide full functional-

ity. As described in [29], “Certainly, rip-and-replace is not a viable strategy for the

broad adoption of new networking technologies.” Providing cost-effective means to

adopt SDN technologies without completely replacing existing infrastructure benefits

researchers and end-users alike.

An inexpensive hardware device that usurps flow-level control from a legacy switch

is proposed. This “shim” layer can provide SDN features on legacy switches to enable

pre-purchase testing and cost-effective infrastructure upgrade planning.

The goals are to determine a viable shim design, where the shim is best deployed

and if, despite performance limitations, such a device is practical. The specific

performance metrics are throughput and latency of the device while connected to a

switch. The design is implemented on a NetFPGA-1G-CML development board which

uses a Xilinx Kintex-7 FPGA connected to four 1 Gigabit per second (Gbps) Ethernet

PHY chips and ports. The switch is a Cisco Nexus 3048T. It is not a “legacy” switch

as it includes support for OpenFlow and other SDN protocols, but was configured to

behave as one for the experiments. It is equipped with forty-eight 1 Gbps Ethernet
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ports and four 10 Gbps enhanced small form-factor pluggable (SFP+) transceiver

ports.

3.3 Related work

There are a variety of proposed techniques for gaining control of legacy network

devices in an SDN network. They generally fall into the categories of controller-based

legacy control, intermediate devices, and network architecture planning.

An example of controller-based legacy control is OpenDaylight, a relatively new

and open-source SDN controller. It includes a service adaptation layer which aims to

abstract the southbound protocol details from the higher layers by use of protocol

plugins [30]. In addition to OpenFlow, NETCONF, etc., plugins can be created to

cover various legacy switches. Depending on the particular target switch and control

devices exposed (CLI, SNMP, web, etc.), this could be difficult. A heterogeneous

switch environment would further complicate the effort. Even a well-written plugin for

a specific device might not provide the required resolution of control to cover certain

use cases, making the investment questionable.

An example of an intermediate device is given in [31], where the authors propose a

system to translate OpenFlow messages on-the-fly into legacy command directives

for non-OpenFlow switches. They test this on three different vendors’ switches, using

command-line, SNMP, and web service configuration to modify the switch behavior

in accordance with the OpenFlow messages from the controller. While successful at

translating messages for the targeted hardware, this approach has its own drawbacks.

Again, it would be necessary to customize the method of configuration control for

every vendor, and possibly every model or even software version of a switch. Also,

as explained in [29], “One fundamental restriction of this approach is sacrificing the

reactive mode of operation of OpenFlow, which packets without a matching rule are
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forwarded to the controller via packet-in events.” As the OpenFlow protocol itself

must be altered, many network applications could not run unmodified. Finally, they

also found their approach requires substantial modifications to the controller, further

distancing their solution from a standard OpenFlow deployment.

ClosedFlow is a more recent effort to include legacy switches in an OpenFlow

environment. In [32], the authors target 10-year old Cisco switches with the goal of

being able to run unmodified SDN applications. They repurpose the layer 3 routing

protocols on the switches, specifically Open Shortest Path First (OSPF). This approach

was successful at finding a rough approximation of OSPF to OpenFlow commands to

enable SDN functionality on older hardware. The obvious drawback to this approach

is that it requires the legacy switches to be multilayer switches that support routing

protocols. These switches are much more expensive and typically less abundant than

layer 2-only switches.

An example of network architecture planning as an SDN-enabler is given in [33],

where the authors propose careful placement of SDN-enabled switches in a network.

As long as any flow traversing the network is handled by at least one SDN switch,

many of the benefits of SDN can be gained while requiring only a subset of devices

be upgraded. Given certain assumptions and a typical, 3-tier enterprise network

architecture, they suggest that as few as 10% of the distribution layer switches can

be upgraded to achieve SDN management capabilities over the whole network. This

approach comes closest to solving the problem and could be used simultaneously with

the proposed shim.

3.4 Hardware Shim Design

An OpenFlow “shim” layer implemented with relatively inexpensive hardware

could be successful in certain scenarios. The envisioned device will connect to an
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OpenFlow controller, present itself to the controller as a regular OpenFlow switch,

and control flows on the connected legacy switch in accordance with messages from

the controller. An example physical configuration is shown in Figure 10. Design

goals include utilizing ubiquitous switch features, supporting all OpenFlow features,

minimizing latency, maximizing throughput, matching the frame rate from the switch,

and keeping the hardware design simple (and therefore inexpensive).

Controller

Shim
Trunk

VLAN 101 VLAN 102 VLAN 103

Switch

Figure 10. Physical switch/shim configuration showing the insertion of an OpenFlow
shim

The only prerequisite switch feature is support for IEEE 802.1Q VLAN tags. This

makes the design widely applicable, as VLANs are supported on the vast majority of

business class switches manufactured in the last 10 years. A configuration in Cisco IOS

format is shown in Figure 11. The legacy switch must be preconfigured with a VLAN

trunk to the shim and access ports on unique VLANs. While there are 4094 VLAN

IDs available (12 bits with first and last reserved: 212− 2), some switches only support

a smaller subset of active VLANs. However, this smaller subset is usually more than

the number of ports on the device. Switch-connected ports should be configured as

trunk ports, but the selection of VLANs for these trunks should be distinct from those

used for the host-connected access ports.
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1 interface Ethernet1/1

2 no lldp transmit

3 no cdp enable

4 switchport mode access

5 switchport access vlan 301

6 spanning-tree port type edge

7 spanning-tree bpdufilter enable

8 interface Ethernet1/2

9 ...

10 switchport access vlan 302

11 ...

12 interface Ethernet1/48

13 description netfpga-shim

14 ...

15 switchport mode trunk

16 switchport trunk allowed vlan 301-347

Figure 11. Example switch configuration in Cisco format

As each host port resides on its own VLAN, the switch will never pass frames

from one port to another, only to the shim. The shim receives all switch traffic, and

is able to manage whether each packet is delivered out another port, delivered to the

controller via an OpenFlow PacketIn message, dropped, modified, or rewritten. The

shim therefore contains the primitives of a true OpenFlow switch, with the legacy

switch providing a physical extension of ports to the FPGA device. This approach

should work even on a network where VLANs are already in use, as long as separate

VLAN IDs are chosen and the VLANs allowed on each trunk are carefully controlled.

In contrast with other approaches, this design does not require any modification to

the SDN controller, and should be able to support all OpenFlow features. It is widely

applicable to legacy switches, requiring only VLAN support, and does not have to

be customized to the switch make or model. It can be implemented with relatively

inexpensive hardware; suitable FPGA boards are less than $1,000, while replacing a

switch can cost $20,000.
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3.5 Implementation

The system is written in VHSIC Hardware Description Language (VHDL) with

Vivado Design Suite 2014.4, targeting the Xilinx Kintex-7 XC7K325T-1FFG676 FPGA

on the Digilent/CML NetFPGA-1G-CML [34]. To keep the design small and fast, the

existing Digilent/CML code base was not used and new components were created.

The design is comprised of three top-level components: the receive and transmit

interfaces and the shim wrapper. Secondary top-level components include the clock

generator, global reset, and PHY reset, along with debugging components (integrated

logic analyzer and virtual I/O).

The VHDL components are depicted in Figure 12. The shim wrapper creates a

shim component for each activated interface (the number of active shim interfaces

is configurable). Each shim component includes an Ethernet parser (parse) which

extracts header details, a modifier (mod) which manipulates the header, and an

Ethernet generator (tx) which combines the modified header with the frame payload

into a Gigabit Media Independent Interface (GMII) stream. The modifier references

the shim configuration memory to map the incoming frame VLAN to the input port

of the external switch, which is analogous to OpenFlow’s uint8_t in_port portion of a

ofp_packet_in message. Based on the other header parameters and the configuration

memory, the modifier selects whether to transmit a modified version of the frame or

drop it. If selected for transmission, the output port is encoded as the new VLAN

(again analogous to the OpenFlow uint16_t out_port), and the Ethernet generator is

signaled to generate the modified GMII stream for transmission. The FIFO queue is

used to hold the frame payload.

If the frame must be broadcast or output on multiple ports (OFP_FLOOD or OFP_ALL

output ports in OpenFlow), the modifier instead signals the broadcast generator,

which keeps a two-stage FIFO buffer for generating n copies of the frame without
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Figure 12. Design VHDL components

blocking the primary pipeline. Of course, given enough sequential broadcasts and a

smaller parameterized FIFO for the broadcast generator, the system can drop some

broadcast frames. However, dropping frames due to contention is allowed in Ethernet.

This system is designed to match the switch’s outgoing frame rate. As the shim is

a hardware pipeline design, it is able to track one-for-one with frames coming from

the switch. Implementing a single port of the design on the NetFPGA-1G-CML uses

only a small portion of the FPGA, as shown in Table 2 (without broadcast offload and

using a static VLAN configuration). A custom shim could be developed on a much

smaller (and inexpensive) FPGA.

Table 2. FPGA resource utilization (1 port, static flow, Kintex-7)

Resource Utilization Available Utilization %

FF 870 407600 0.21
LUT 582 203800 0.29
Memory LUT 7 64000 0.01
BRAM 15 445 0.34
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3.6 Measurements and Results

In order to estimate the design’s practicality and limitations in terms of performance,

tests were run to find the affect on throughput and latency of traffic going through a

shim-connected switch.

The hardware used for testing included:

• Shim: the shim design synthesized and loaded onto one NetFPGA-1G-CML

• Switch: a Cisco Nexus 3048 (N3K-C3048TP-1GE) connected to the shim

• Test server: an Aberdeen Superserver with 384 GB RAM, two 2.30 GHz 8-core

Intel Xeon E5–4610 CPUs, and two 4-port Intel 82576 1 Gbps Ethernet cards

running Fedora 21 and Docker 1.5.0

• Test FPGA: a second NetFPGA-1G-CML loaded with a custom latency test

No controller was used in testing as the tests were to find the loss of performance

in the best-case, isolated to the interaction between switch and shim. Therefore, the

shim was pre-loaded with forwarding rules. This mimics an SDN with proactive flow

rule installation, or one in which rules for these particular flows have already been

installed by a controller. It is clear without testing that in reactive flow handling there

would be significant costs to performance, especially latency of the initial packet of a

flow.

Throughput and latency were measured with and without the shim. The goal of

testing throughput was to estimate the decreased capacity for one stream in terms

of bits of data per second. The goal of testing latency was to estimate by how much

an individual packet would be slowed by having to transition through the shim, even

when there is otherwise no contention for resources.
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The expectation is for throughput to be significantly decreased—by 10% or more—

and for latency to effectively double. The expectation of double latency stems from

the assumption that the processing and re-transmission of packets by the shim takes

about the same amount of time as the switch. These expectations are each evaluated

with an independent, two-sample t-test.

3.6.1 Test Setup.

Because of the nature of these tests, Transmission Control Protocol (TCP) was

used for testing throughput and User Datagram Protocol (UDP) was used for testing

latency. TCP is a more realistic measure of throughput as it is a connection-oriented

protocol that is typically used when transmitting large amounts to ensure no data

is lost or received out-of-order. UDP, a connectionless protocol, has lower overhead

than TCP, and is typically used in situations where low latency is a priority over

guaranteed message delivery.

Test 1 provides a baseline for the performance of the switch without the shim

device. In Test 1, the two switch ports are configured as access ports of the same

VLAN. This effectively makes traffic pass normally through the switch from one port

to another. Test 2 connects the shim device to the switch as a VLAN trunk, and the

two access ports are set to separate VLANs. This forces the switch to forward traffic

to the shim only, as described in Section 3.4.

Switch features that may interfere (e.g., STP, CDP, and LLDP) were disabled

for all tests. It is assumed that the performance characteristics are the same within

the switch regardless of which physical ports were used and which VLAN a port is

assigned to.
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3.6.2 Throughput test.

Throughput was measured with iperf3, a widely-used, open-source software tool

written by Lawrence Berkeley National Laboratory and its Energy Sciences Network. It

is designed to measure throughput over IP links. It is implemented as a single-threaded,

client-server application and can test TCP, UDP, or SCTP throughput [35].

A pair of containers was used to perform each throughput test with iperf3, with

one container attached to its own Ethernet port on the test server, connected to

the switch. One container ran as an iperf3 client while the other ran as the server.

Containers were pinned to separate CPUs to reduce contention and overhead. The

throughput test configurations are depicted in Figure 13. Note that the areas in gray

are not part of the test. As stated above, the shim was pre-loaded with flow rules to

forward packets.

Controller

Test Server

Shim
Trunk

VLAN x VLAN x

Switch

Container x Container y

Not included in test

Test 1: Switch only

Controller

Test Server

Shim
Trunk

Switch

Container x Container y

Not included in test

Test 2: Switch & Shim

VLAN x VLAN y

Figure 13. Overview of throughput test configurations

One run of iperf transmits data from the client to the server for one second, ten

times, pausing for one second between each transmission, and gives a simple average of

the results at the end in megabits per second (Mbps). The version of iperf3 available

at time of testing did not report statistics beyond the overall average. However, each

36



1-second result is printed, and it was these intermediate results which were used for

analysis.

Preliminary results using iperf3 indicated an average throughput of the switch

alone at approximately 945 Mbps with a sample standard deviation of approximately

6. Given these values, a desired accuracy, and a confidence level, Jain provides an

equation for sample size for determining mean

n =

(
100zs

rx̄

)2

(1)

where n is the sample size, z is the z-score for the confidence level, s is the sample

standard deviation, x̄ is the sample mean, and r is the desired accuracy as a percent-

age [36]. Jain states that a desired accuracy of r percent implies that the confidence

interval is (x̄(1− r/100), x̄(1 + r/100)). For example, a confidence level of 95% would

require an r of 5 and z of 1.96.

Applying this equation to the preliminary values and a desired confidence level of

99% results in dne = 3. This low value results from the sample mean being so large

relative to the sample standard deviation. From this, it was determined that attaining

20 samples would be more than sufficient.

3.6.3 Latency test.

Latency was measured with a separate NetFPGA-1G-CML in order to get higher

resolution timing than possible on a conventional server. This is because the FPGA

runs only and exactly the synthesized VHDL, while a computer is interrupt-driven

and therefore can make no guarantees on precise timing of events.

The board was loaded with custom VHDL to send traffic on one port and receive

it on the other, measuring the transfer time at a resolution of tens of nanoseconds. In

order to measure latency independent of congestion, transmissions were separated by
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one second, similar to the throughput test. Unlike the throughput test, the hardware

nature of the FPGA prevented a preliminary trial, so 40 samples was determined to be

sufficient regardless of the resulting sample mean and standard deviation due to the

central limit theorem. One UDP packet was sent from the sending port per second,

40 times. The time delta from the time sent to the time received on the receiving port

was recorded. The latency test configurations are depicted in Figure 14.
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Test 1: Switch only

Controller

Shim
Trunk

Switch
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Test 2: Switch & Shim
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Test FPGA

Figure 14. Overview of latency test configurations

3.6.4 Results and Analysis.

Table 3 summarizes the results of each test, with subscript T denoting throughput

and subscript L denoting latency. Raw results are given in Appendix A.

Table 3. Performance results

x̄T sT x̄L sL

Test 1: Switch 943.7 Mbps 5.4 3894.6 ns 39.6
Test 2: Switch & Shim 935.7 Mbps 9.3 7567.6 ns 36.7
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Welch’s t-test is an appropriate test to compare two means, which provides the

same results as an independent t-test while correcting for a lack of homogeneity of

variance, if necessary [37].

On average, throughput for the switch alone (x̄ = 943.7, SE = 1.197) was signif-

icantly higher than the switch with shim (x̄ = 935.7, SE = 2.083), t(30.3) = 3.33,

p < 0.01, r = 0.512. Latency was significantly lower for the switch alone (x̄ = 3894.6,

SE = 6.3) than the switch with shim (x̄ = 7567.6, SE = 5.8), t(77.5) = −430.3,

p < 0.01, r = 0.9998.

The 99% confidence interval (α = 0.01) for difference in means for throughput is

(1.4, 14.6). This interval does not include zero and is positive, indicating significance

at this confidence level and a higher average throughput for the switch alone. This

matches with expectations. Additionally, the higher-bound of the interval is 14.5,

which indicates a percent difference of only 14.6
943.7

= 0.015, or about 1.5% reduction in

throughput when adding the shim under these conditions, which is less than expected.

The 99% confidence interval (α = 0.01) for difference in means for latency is

(−3695.539,−3650.461). This interval does not include zero and is negative, indicating

significance at this confidence level and a lower average latency for the switch alone.

This matches with expectations.

However, with a sample mean of 3894.6 ns for the switch alone, the additional

average latency of up to 3695.539 ns for adding the shim is less than double the original

latency. This indicates that it is possible that the shim in its current configuration is

able to forward packets faster than the switch. Alternatively, the assumption that

the switch behaves the same in both test conditions may be false. In either case, the

total system of switch with shim resulted in less additional latency on average than

expected.
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The latency measurements met expectations based on the switch specifications,

which indicate a latency between 2.7 and 7.2 microseconds.

While the increased latency and reduced throughput may be negligible for this

simple set up, it is expected to be a larger issue with contention in the switch when

there are multiple simultaneous streams that all need to be fed through the shim.

3.7 Potential Issues and Mitigations

The most significant issue is decreased throughput as the configuration creates a

bottleneck at the switch port leading to the shim. A single switch port simply cannot

handle the traffic of all the other ports at the same time. While this design would

not be the best fit for a high-traffic, throughput-sensitive network, there are a few

approaches that can help alleviate the issue.

If available, order-of-magnitude higher-bandwidth ports can be used on both the

shim device and switch. For example, many switches have a few higher-speed uplink

ports, e.g., 10 Gbps ports on an otherwise 1 Gbps switch, or 40 Gbps ports on a

10 Gbps switch. A variety of 10 Gbps SFP+ FPGA boards are available for less

than $3000. As another approach, many FPGA development boards have two or four

network ports; the bandwidth of these could be combined with a link aggregation

protocol, albeit to the detriment of the number of available switch ports.

The design also introduces added latency to each flow. The amount of latency

is proportional to the amount of traffic and number of ports the shim is required to

handle. The mitigating approaches outlined above also help reduce added latency.

Additionally, the choice of FPGA as a platform and the specific implementation of

that design keep added latency to a minimum, as opposed to a purely software-based

design.
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While the design introduces some additional latency, it is less than 10 microseconds

for most flows. However, the added latency is more profound with broadcast or

multicast traffic. Since each port is on a separate VLAN, there is no shared broadcast

domain. As a result, when the shim must deliver a frame to multiple ports, it must

sequentially produce a copy of that frame for each destination port. The amount

of time required to transmit one broadcast frame is more than n times that of a

traditional switch, where n is the number of ports. This also results in skew between

the broadcast times of the first and last ports, which could negatively affect some

applications. The time the shim spends sending all these frames precludes it from

sending any other traffic, which could result in a backlog of traffic and potentially

many dropped frames.

One technique to avoid the broadcast latency issue is to use a feature that retains

isolation between host ports while providing a shared broadcast domain, like protected

or isolated ports or Private Virtual LANs (PVLANs). These features are generally

the same, but have different names and nuances across vendors and models. Since

the shim is on an unprotected or promiscuous port of a primary VLAN, it could send

broadcasts to all other ports with a single frame. The issue with using PVLANs is

that it removes the ability of the shim to distinguish between individual ports. The

shim could potentially target certain ports by keeping track of MAC addresses and

relying on the MAC learning of the switch, but the device could no longer be a drop-in

replacement supporting OpenFlow.

Another technique to mitigate broadcast latency, resulting backlog, and dropped

frames is to utilize a separate port and processing pipeline of the shim for sending

broadcasts. This keeps the primary port of the shim dedicated to unicast transmissions

only, which are higher priority in most situations. When a broadcast is needed, it is

sent to a separate pipeline within the FPGA that transmits packets out a secondary
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port connected to the switch. The delay for the primary pipeline is identical to that

of a unicast frame.

While these approaches can mitigate the issue, the design will always result in

some reduction in bandwidth. Whether this is acceptable depends upon the nature

of the network; the shim may not be an acceptable choice for a network operating

near its maximum capacity. On the other hand, an existing network could be safely

partitioned to allow experimental deployment of the SDN architecture on the existing

hardware.

3.8 Future work

Continued design development is planned to make the design more relevant to

high-traffic environments. One approach is to move development to a 10 Gbps board

and use 10 Gbps switch uplink ports for the shim trunk.

Another approach, which can be combined with the move to 10 Gbps, is to

implement handoff between output ports on the shim; the switch will be partitioned

into three or four sets of ports, with each set being handled by a different port on the

shim. Frames that cross partitions will be transparently handed off in the FPGA. It

is expected that this will improve contention by a factor of the number of partitions.

Finally, updating the design to include an OpenFlow agent will make the shim a

stand-alone, drop-in SDN enabler. An OpenFlow agent is the intermediary between

an OpenFlow controller and the data plane. An agent on the shim would make the

combination shim and switch appear and act as a standard OpenFlow switch to a

controller. The agent may be implemented as a soft-core processor (MicroBlaze on

Xilinx FPGAs), an ARM-based mezzanine card, or on a host CPU as in [38]; these

options will be compared.
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The upgrade path to a modern SDN network architecture can be daunting. Equip-

ment costs are formidable, benefits may be unclear, and networking programming is

unfamiliar territory for many network engineers. A simple shim device that can add

a layer of SDN functionality to legacy equipment may go a long way toward easing

adoption pains for network practitioners. Certainly, there will be trade-offs in such a

design in terms of performance. However, these compromises may be acceptable in

testbeds as the shim can help SDN newcomers understand how they might leverage

new networking technologies, perform more controlled upgrades of their equipment,

and get the most long-term value for their investment.
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IV. OpenFlow Schema: Message Creation, Exchange, and
Validation

4.1 Introduction

By choosing to adopt SDN, a network practitioner may be seeking to reduce their

organization’s dependence on a single company. However, without interoperability

between SDN software offerings, that dependence simply moves up the stack from

hardware to software.

4.1.1 Hardware Independence.

Through OpenFlow, the hardware switches in the network lose much of their

importance; in a sense, they become a commodity. As long the switches implement the

right versions of the chosen protocols and have the desired performance characteristics,

it does not matter which vendor produced them. So-called “whitebox switches” aim

to fill this need in the market today. They are often available at a fraction of the

price of traditional hardware and offer total flexibility with regard to software and

protocols.

This is in contrast to traditional networking hardware, where the choice of vendor is

often extremely important to the practitioner. In these traditional devices, the control

and data planes are vertically integrated. In other words, the configuration, upgrades,

and maintenance of the devices varies significantly from one vendor to the next, and

sometimes even by product line of the same vendor. The result is that the network

practitioner ends up having to repurchase from the same vendor when upgrading or

expanding the network, or else face exorbitant switching costs, a situation referred to

as “lock-in” [39].
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4.1.2 Software Dependence.

Whitebox switches may be immune to hardware vendor lock-in, but they do not

function without software. As explained in Chapter II, the controller is the most

important component of an SDN architecture [17]. Once a controller is chosen, a

practitioner will need to develop or acquire network control applications that interface

with that controller to make network behavior conform to policy. This interface

between controller and application is often called the “northbound interface.” With

no standard northbound interface, portability between controllers is impossible. This

is shown conceptually in Figure 15, where though there is total compatibility between

switches and controllers, the applications written for controller A are incompatible

with controller B, and vice-versa.

Switch Switch Switch

Controller A Controller B

App A1 App A2 App B1 App B2

Figure 15. Conceptual diagram showing non-interoperability of SDN applications be-
tween controllers

4.1.3 Schema as a Lingua Franca .

One solution to this problem would be to standardize the northbound bound

interface on a single API or set of APIs. As described in Section 2.5.3, while OpenFlow

has become the standard southbound interface for SDN, there does not currently exist
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a standard northbound interface. While some standardized northbound interfaces have

been proposed, others advocate against premature standardization of the northbound

interface, arguing it will stifle innovation [18, 19, 39].

Instead of a standardized northbound interface, this chapter discusses the imple-

mentation of a schema for creating, validating, and sharing messages between the

controller and its applications. A schema in this sense is a formal description of the

format and types of data that can be contained in a document or object. For example,

an Extensible Markup Language (XML) schema can be used to constrain an XML

document to certain elements and contents. This approach allows for total flexibility

of API while constraining OpenFlow-related data to a known valid set of names and

values.

OpenFlow, the most widely-used SDN switch protocol, is standardized and devel-

oped by the Open Networking Foundation (ONF). Besides describing the characteristics

of OpenFlow switches and controllers, a major portion of each version’s specification

is devoted to describing the wire protocol format, along with a nominal C language

header file. While this dictates the format for messages passed “on the wire” (between

switches and controllers), it does not specify a format for OpenFlow message data

while in memory or as it is passed between the controller and applications.

4.1.4 Schemas and Serialization.

The term “serialization” is used to describe the translation of in-memory objects

or structures to a stream of bytes. There are several existing, high-quality serialization

libraries such as Google’s Protocol Buffers, Apache Avro, and Apache Thrift; however,

these libraries solve a different problem than the type of serialization required here.

These libraries are made primarily to ease development of custom remote procedure

call (RPC) systems, where the in-memory format is specified but the serialized binary
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format is flexible. In this case, the OpenFlow binary format is already published,

while the in-memory format is flexible.

Therefore, the schema created here aims to prove the utility of a standard, doc-

umented format for the in-memory representation of OpenFlow messages, while

Chapter V discusses serialization and deserialization of messages.

4.2 Related work

Instead of a schema, most existing OpenFlow controllers utilize a custom, language-

specific format for these messages. For example, the Java-based controllers Floodlight

and OpenDaylight use Java classes, Python-based controllers Ryu and Pyretic use

Python objects, and the ONF-maintained Libfluid library uses C++ classes. A notable

exception is the proprietary Hewlett Packard Enterprise (HPE) Virtual Application

Networks (VAN) SDN controller, which uses an HPE-branded schema to validate

messages and other data. This approach makes it easier for developers to write

applications for this proprietary controller; however, these applications and the schema

exposed by the controller are still specific to that one controller and not intended to

be universal nor to aid portability.

4.3 Benefits

An independent, non-proprietary OpenFlow schema would be an important ad-

dition to the SDN ecosystem. It would decrease developer effort and could allow a

degree of interoperability between network applications built for different controllers.

It could even promote inter-controller communication between different systems.

In this controller project, the schema has greatly reduced the complexity and

redundancy of the OpenFlow library by separating the encoding and decoding functions

from those functions that check for correctness of required fields and values. The
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schema also provides a means for creation of a new message instance with valid

default values. As the schema is language-agnostic, it can be extended and updated

for new OpenFlow versions independently of the controller and OpenFlow library.

The controller API documentation is greatly simplified by referring the format of all

OpenFlow messages to the schema itself.

4.4 Implementation

4.4.1 JavaScript Object Notation (JSON).

JavaScript Object Notation (JSON) is a common format for exchange of data

between applications. While based initially on JavaScript Objects, JSON is widely

used to exchange data between many languages, including Java, Python, Ruby, C, and

others [40]. JSON Schema can be used to check for validity by providing a standard

way to describe required properties, types, and allowed values in any structure. JSON

Schema is described in a series of IETF drafts, and provides a format (itself JSON)

for validating the structure and content of any JSON document [41].

4.4.2 YAML Ain’t Markup Language (YAML).

While JSON is widely used and suitable to large schemas, it is tedious to write.

All key-values and strings must be quoted with double-quotes, all sub-structures must

be bracketed with curly braces, arrays must be bracketed with square braces, and

comments are not allowed. To ease this effort and improve readability, the OpenFlow

schema created here is written in YAML. YAML, like JSON, is a common format

for exchanging data between applications, or as a configuration file format, but aims

to be more human-friendly. As of version 1.2, YAML is an official subset of JSON,

making it easy to translate into either JSON or in-memory JavaScript objects, while

being easy to read and write [42]. Unlike JSON, comments are allowed, formatting
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is unambiguous yet less strict, whitespace is significant, and strings do not require

quoting.

4.4.3 YAML-JSON Translation.

The schema of the OpenFlow 1.0 header in both YAML and JSON is given as an

example in Figure 16. In this figure, the left side shows how simply a message can

be documented using JSON Schema in YAML, and the right side shows the simple,

one-to-one translation from YAML into JSON that is done with the YAML library

parser. Instead of translating the result to JSON, the library can instead instantiate

the input YAML into JavaScript objects in memory. Whether read from the resulting

JSON or directly from YAML, these objects can then be fed into a JSON Schema

validation library or object instantiation library to validate or create new objects

according to the schema, respectively.

4.4.4 OpenFlow Schema Structure.

The schema is structured at the top level by OpenFlow version number, with

versions 1.0 and 1.3 currently implemented. This allows the consumer of the schema

to select and validate against all versions or a specific version of the protocol, as

required. Each OpenFlow schema version consists of a collection of YAML documents.

A generic message is defined first in the schema, and each OpenFlow message extends

this generic message. A separate document defines common structures which are

referenced in the message definitions.

4.4.5 References.

While the entire set of schemas could be held in one single document, splitting

it by message across several documents makes it easier to write and maintain. The
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1 # Header common to all OpenFlow messages

2 ofp_header:

3 description: OpenFlow header

4 type: object

5 properties:

6 version:

7 description: OpenFlow version

8 type: integer

9 minimum: 1

10 maximum: 0xFF

11 default: 1

12 type:

13 $ref: "#/ofp_type"

14 length:

15 description: Message length in bytes

16 type: integer

17 minimum: 8

18 maximum: 0xFFFF

19 default: 8

20 xid:

21 description: Transaction ID

22 type: integer

23 minimum: 0

24 maximum: 0xFFFF_FFFF

25 default: 0

26 required:

27 - version

28 - type

29 - length

30 - xid

1

2 "ofp_header": {

3 "description": "OpenFlow header",

4 "type": "object",

5 "properties": {

6 "version": {

7 "description": "OpenFlow version",

8 "type": "integer",

9 "minimum": 1,

10 "maximum": 255,

11 "default": 1

12 },

13 "type": {

14 "$ref": "#/ofp_type"

15 },

16 "length": {

17 "description": "Message length in bytes",

18 "type": "integer",

19 "minimum": 8,

20 "maximum": 65535,

21 "default": 8

22 },

23 "xid": {

24 "description": "Transaction ID",

25 "type": "integer",

26 "minimum": 0,

27 "maximum": 4294967295,

28 "default": 0

29 }

30 },

31 "required": [

32 "version",

33 "type",

34 "length",

35 "xid"

36 ]

37 }

Figure 16. OpenFlow header schema in YAML (left) and JSON (right)
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separate files refer to structures in the other by Uniform Resource Identifier (URI)

references (defined in a similar IETF draft). While these references are currently

relative, they can be expanded to “absolute” URIs. A standards body like the ONF

could use this to enable applications to update their supported schemas at run time,

keeping every implementation on the exact same schema format.

The example in Figure 16 is one of the common structures referenced by every

message, as every message starts with a header. By using references, common structures

can be defined once, reducing redundancy. An example of this can also be seen in

Figure 16, left side, lines 12–13 (and respectively right side, lines 13–15), where the

type of the message links to the definitions of \ in the same document (#/ indicates

the root of the document). The definition of ofp_type is shown in Figure 17, which

shows that the type of the message is defined as an enumeration of strings. In other

words, the type must be the string value of one of the message types defined for that

version of OpenFlow.

4.4.6 Example Message Definitions.

An example message definition is given in Figure 18, which shows how succinctly

the echo request message can be defined. The definition starts with required header

information in the first three lines, then goes on to describe the echo request message

object. As header is the only element in the required array, the data property is

optional. The header property consists of a merge of the ofp_header definition and

the type OFPT_ECHO_REQUEST. Use of the JSON Schema keyword allOf allows the same

header definition to apply to every OpenFlow message by overriding the type property.

A longer example is given in Figure 19, which shows how the OpenFlow version

1.3 PacketIn message, containing several required and optional fields, is defined. Note

that the definition starts with an enumerated list of the required properties; any
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1 ofp_type:

2 description: Message type (OFPT_HELLO, OFPT_ERROR, etc)

3 type: string

4 enum:

5 - OFPT_HELLO

6 - OFPT_ERROR

7 - OFPT_ECHO_REQUEST

8 - OFPT_ECHO_REPLY

9 - OFPT_VENDOR

10 - OFPT_FEATURES_REQUEST

11 - OFPT_FEATURES_REPLY

12 - OFPT_GET_CONFIG_REQUEST

13 - OFPT_GET_CONFIG_REPLY

14 - OFPT_SET_CONFIG

15 - OFPT_PACKET_IN

16 - OFPT_FLOW_REMOVED

17 - OFPT_PORT_STATUS

18 - OFPT_PACKET_OUT

19 - OFPT_FLOW_MOD

20 - OFPT_PORT_MOD

21 - OFPT_STATS_REQUEST

22 - OFPT_STATS_REPLY

23 - OFPT_BARRIER_REQUEST

24 - OFPT_BARRIER_REPLY

25 - OFPT_QUEUE_GET_CONFIG_REQUEST

26 - OFPT_QUEUE_GET_CONFIG_REPLY

Figure 17. JSON Schema definition of the OpenFlow 1.0 message type field as an
enumerated string value in YAML

1 $schema: http://json-schema.org/draft-04/schema#

2 description: Schema describing an OpenFlow echo request message, version 1.0

3 id: of10/ofp_echo_request.json

4

5 type: object

6 required: [header]

7 properties:

8 header:

9 allOf:

10 - $ref: definitions.json#/ofp_header

11 - properties:

12 type:

13 enum: [OFPT_ECHO_REQUEST]

14 default: OFPT_ECHO_REQUEST

15 data:

16 $ref: definitions.json#/optional_data

Figure 18. JSON Schema definition of the OpenFlow 1.0 Echo Request message in
YAML
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properties not listed here are optional. Also note the definition of the cookie property,

which defines a string that is limited by a regular expression. The resulting string

describes a hexadecimal value that is 16 characters long, which is an 8-byte (or 64-bit)

integer. 64-bit integers are defined this way in order to prevent loss of precision when

storing values in JavaScript objects. (As described in Chapter V, JavaScript only

stores numbers in 64-bit IEEE 754 representation, so such string-based workarounds

are necessary; however, this will not hinder implementations in languages with native

64-bit integer support).

4.4.7 Schema Distribution.

The OpenFlow Schema codebase is intended to be distributed as a set of YAML

documents. However, as YAML support is not as widespread as JSON, the codebase

includes a script to generate JSON Schema documents from the YAML source. This

may help for languages which do not have a YAML library or parser, as JSON support

is nearly ubiquitous.

Covering OpenFlow versions 1.0 and 1.3, the schema consists of about 3800 lines

of YAML which generates about 4000 lines of JSON. For distribution, the code can

be published to the JavaScript package management system npm [43], making it fast

and easy to install.

4.4.8 Message Instantiation.

In order to facilitate creation of new message instances based off the schema, a

separate function was written. This function utilizes the popular JavaScript-based

JSON Schema validator, Ajv [44]. While Ajv can provide limited object creation,

it does not support this feature using default keywords in subschemas or the allOf

keyword, both of which are used in the OpenFlow schema. The function creates
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1 $schema: http://json-schema.org/draft-04/schema#

2 description: Schema describing an OpenFlow packet in message, version 1.3

3 id: of13/ofp_packet_in.json

4

5 type: object

6 required:

7 - header

8 - buffer_id

9 - total_len

10 - reason

11 - table_id

12 - cookie

13 - match

14 properties:

15 header:

16 allOf:

17 - $ref: definitions.json#/ofp_header

18 - properties:

19 type:

20 enum: [OFPT_PACKET_IN]

21 default: OFPT_PACKET_IN

22 buffer_id:

23 type: integer

24 minimum: 0

25 maximum: 4294967295

26 default: 0

27 total_len:

28 type: integer

29 minimum: 0

30 maximum: 65535

31 default: 0

32 reason:

33 $ref: definitions.json#/ofp_packet_in_reason

34 table_id:

35 type: integer

36 minimum: 0

37 maximum: 255

38 default: 0

39 cookie:

40 type: string

41 pattern: ^[a-fA-F0-9]{16}$

42 default: '0000000000000000'

43 match:

44 $ref: definitions.json#/ofp_match

45 data:

46 $ref: definitions.json#/optional_data

Figure 19. JSON Schema definition of the OpenFlow 1.3 Packet In message in YAML

54



an instance of Ajv, loading the schema into it, and extracts a fully-resolved schema

object. It then implements Algorithm 1 to allow any message, denoted by id, to be

instantiated with default values. Comments in Algorithm 1 are shown right-aligned,

prefixed with B.

Algorithm 1 instantiator

schema ← retrieved schema from Ajv by id

procedure recursiveInstantiate(schema)
if schema has property $ref then . Resolve and merge any refs; recurse

resolved ← merged, resolved reference from Ajv
return recursiveInstantiate(resolved)

else if schema has property type then . Properly instantiate default
if type is object then . Recurse into each required property

if schema has property required then
for each required property p do

result[p] ← recursiveInstantiate(p)
end for

end if
return result

else if type is integer, array, or string then . Return default value
if schema has property default then

return default

else
return null

end if
else return null
end if

else if schema has property allOf then . Merge each allOf; recurse
merged ← merged schemas
return recursiveInstantiate(merged)

end if
end procedure

As the code recursively iterates through the schema for each call, the use of this

package in the library is done completely at application startup. The library uses this

package to precompute the defaults for each object and stores those as a constant,

avoiding many recursive calls and improving performance.
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An example of using the package from a JavaScript environment (e.g., Node.js

as described in Chapter V or a modern web browser) is shown in Figure 20. In this

example, the lines starting with // => give the result of the console.log statements

printed to the console. At the start of the file, the Instantiator class from the library is

loaded, and then a short example schema is defined. This example schema is unrelated

to OpenFlow or SDN. The schema is loaded into the library on line 29 and a new

instance of the object is created on line 30. Line 31 prints out the result, which shows

that each of the properties and its default value have been created on the new object.

4.5 Future Work

A future goal is to add schemas for other popular versions. The ONF releases

new versions of the OpenFlow switch protocol approximately every 12–18 months,

as shown in Table 1, and coverage of additional versions would greatly increase the

usefulness of the schema.

Another goal is to extend the schema to the point where it (1) can become the

documentation for the protocol, in place of the C header file, and (2) makes it possible

to write a single encoding/decoding library that covers all versions by referencing

different schema. This latter goal would allow the use of new OpenFlow versions by

just updating the referenced schema version. However, this would be non-trivial as

it would require examining all published versions of the protocol to determine how

to describe each construct in a way that makes it correct and minimizes redundancy.

There is some prior art in this latter objective by the project Loxigen by Big Switch

Networks, which uses a simplified, proprietary description of the protocol to generate

library functions for C, Java, and Python [45].
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1 /* Example use of Instantiator */

2 const mySchemas = [

3 {

4 "$schema": "http://json-schema.org/draft-04/schema#",

5 "id": "theSchemaId",

6 "type": "object",

7 "required": [

8 "firstName",

9 "lastName"

10 ],

11 "properties": {

12 "firstName": {

13 "type": "string",

14 "default": "Foo"

15 },

16 "lastName": {

17 "type": "string",

18 "default": "Bar"

19 },

20 "optionalProperty": {

21 "type": "string",

22 "default": "Hello"

23 }

24 }

25 }

26 ]

27

28 /* Instantiate with all properties */

29 let ins = new Instantiator(mySchemas);

30 let myDefaultInstance = ins.instantiate('theSchemaId');

31 console.log(myDefaultInstance);

32

33 // => { firstName: 'Foo', lastName: 'Bar', optionalProperty: 'Hello' }

34

35 /* This time, only with `required` properties */

36 ins.requiredOnly = true;

37 let myRequiredInstance = ins.instantiate('theSchemaId');

38 console.log(myRequiredInstance);

39

40 // => { firstName: 'Foo', lastName: 'Bar' }

Figure 20. Example use of instantiator function
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V. node-openflow: High-Performance OpenFlow Protocol
Library

5.1 Introduction

This chapter describes the design, implementation, and testing of the OpenFlow

library node-openflow. The library is a cornerstone to any OpenFlow-related SDN

work on the Node.js runtime system. While other libraries and controllers exist, this

library is intended to satisfy a use case that existing options do not adequately address:

exhibiting high performance while being easy to use and modify.

5.1.1 Foundation of a Controller.

As explained in Chapter II, an SDN controller is made of software, and because

of the nature of the SDN architecture, this particular piece of software is the central

focal-point of the network. As the focal-point, the controller must manage a multitude

of sockets and states for the hardware switches below it (its “southbound” connections)

and it must expose a powerful and consistent API for the applications above it (its

“northbound” interface). It must also do its job quickly and without error, as the

functioning of the entire network depends on it.

The problem of effectively and efficiently managing connections to hundreds or

even thousands of devices is the focus of this chapter. The library is flexible enough

to be usable both on its own and as a foundation to other projects; as a library, node-

openflow provides all the foundational components that a fully-featured controller

can be built upon. However, node-openflow may also be directly used as a controller.

While this chapter builds upon the schema developed in Chapter IV, it is also used as

the foundation to the framework in Chapter VI. The performance of this library as a
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controller itself and the performance of the framework built upon it are examined in

Chapter VII.

5.1.2 Goals.

The library created here provides an implementation of the OpenFlow switch

protocol with the following goals:

1. Easy to understand, modify, and extend

2. Expose the underlying semantics of OpenFlow

3. High-performance (at least an order-of-magnitude better than Ryu)

The hypothesis in the development of this new controller is that choosing Node.js

as the runtime system for the library will allow for meeting these goals while also

contributing a useful tool to the community for further SDN research.

5.1.3 Chapter Outline.

Related works are covered in Section 5.2, Node.js and its choice as the target

runtime system for the library are described in Section 5.3, and the choice of TypeScript

as the implementation language is described in Section 5.4. Section 5.5 details the

implementation, structure, correctness testing, and use of the library on its own or as

a foundation for other projects. Finally Section 5.6 examines future directions for the

library. The performance of the library is evaluated in Chapter VII.

5.2 Related work

5.2.1 Existing Controllers.

Existing controllers were first considered as possible starting points, however none

provided a suitable foundation to align with the goals expressed above.
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5.2.1.1 Enterprise Controllers.

Existing controllers which are enterprise-focused are high-performing; however,

they abstract away many of the details of OpenFlow. These controllers are often

designed this way as they may support many other southbound protocols according

to the needs of a large enterprise network. Enterprise controllers include commercial

products like HP VAN and NEC ProgrammableFlow as well as open source efforts

like OpenDaylight and the Open Network Operating System (ONOS).

As an example, OpenDaylight’s architecture in Figure 21 depicts many layers

of abstraction. In a controller like this, southbound protocol details do not emerge

beyond the lower-layers, and the controller’s high-level APIs are unique to itself. As

a result, implementing the same routing algorithm on two different controllers may

result in vastly different code, each requiring a substantial investment in learning the

particularities of the chosen platform.

82 CHAPTER 4 HOW SDN WORKS

Application

OpenDaylight

NETCONF BGP-LS/PCEPOpenFlow

Application Application

Northbound APIs

Southbound Protocols

FIG. 4.10

OpenDaylight controller APIs.

via OpenFlow and some managed by legacy APIs. While this would not afford the fine-grained control
over all flows afforded by a pure OpenFlow solution, it offers some intriguing possibilities for intelligent
control of hybrid networks. Fig. 4.10 shows that the distinction between an Open SDN controller as
described earlier in this chapter and SDN via Controller APIs can become blurred.

SDN via Controller level APIs remains a popular choice for SDN application developers, since
it provides SDN functionality in the form of programmability and centralized control, as well as
supporting legacy devices.

SDN via Policy-level APIs
Another approach is to provide a level of APIs which reside at a layer above the controller level. These
APIs are created at a level of abstraction such that they address policies, rather than merely individual
device or network capabilities. These APIs come in different flavors and may be directed at different
target domains, but they all attempt to address network configuration from a declarative perspective,
rather than an imperative one.

These concepts are defined as follows:

• Imperative: Imperative systems and APIs require the user to input exactly how to do a particular
task.

• Declarative: Declarative systems and APIs request the user to input exactly what is to be
accomplished. It is the responsibility of the system to determine how to do it.

Fig. 4.11 shows SDN via Policy APIs; notice the policy layer running on top of the controller,
providing functionality and a level of abstraction which shields the SDN application from the nuances
and details of interacting with a specific device.

These policy-based API solutions are gaining traction not only in the SDN via APIs category, but
also in the Open SDN category as well. An example of this type of API would be the NBI concept of
intents, which raises the API level of abstraction such that requests are truly declarative. The notion of

Figure 21. Architecture of OpenDaylight [28]

While suitable for the enterprise, this has negative consequences for research. A

student or researcher using the controller must become very familiar with both the

underlying protocol and the top-level API, which may have little semantic resemblance

to the underlying southbound protocols. Any experimentation on lower layers may
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require extensive changes to middle layers in order to expose protocol changes in the

API. Finally, the increased complexity and size compared to research controllers can

be a substantial barrier to entry for a graduate student, who may not have extensive

software engineering experience.

5.2.1.2 Research Controllers.

Many research-oriented controllers are specialized for a specific area of research

(e.g., domain-specific languages, policy-based control, etc.), and may not be suitable

for general use. These controllers tend to exhibit poor performance when compared

to enterprise controllers, on the level of several orders of magnitude (as supported by

the results in Chapter VII). This makes it difficult to perform experiments related to

quantified performance, and makes some experiments on large physical or simulated

networks impossible. The Ryu controller is in fact general-purpose while keeping the

semantics of OpenFlow; however, its poor performance and complex internals make it

unsuitable for these types of experiments.

In [22], the authors were able to make a few simple improvements to the NOX con-

troller and gain a performance increase of over 30 times. NOX was a popular research

controller for years, and the success of their contributions shows that performance was

never a critical factor for its developers. The authors assert that this trend applies

broadly to research controllers, stating “most published results were gathered from

systems that were never optimized for performance”, and conclude that this has led

to the incorrect perception that the SDN architecture as a whole is inefficient.
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5.2.2 OpenFlow Libraries.

After determining existing libraries did not align with the goals, a number of

existing OpenFlow libraries were considered. There are three main tasks of any

OpenFlow library:

1. to enable instantiation and building of OpenFlow messages in a structured way,

2. to decode binary OpenFlow message data from the network into usable structures,

and

3. to encode OpenFlow structures into binary messages that can be sent to a socket.

The three libraries considered were LoxiGen, Libfluid, and Ryu. At this point, the

Node.js runtime had been selected as a viable system to build on, so part of the

evaluation was determining how well the existing library could integrate with Node.js.

5.2.2.1 LoxiGen.

The LoxiGen project (Eclipse Public License) is not itself a library, but a language

compiler that accepts a set of language definitions (customized to the LoxiGen project)

for a specific version of the OpenFlow protocol, and outputs encoding and decoding

library functions for the structures as source code in C, Python, and Java [45].

Extending this to also output structures for JavaScript (or one of its variants) would

be on the same level of difficulty as a direct implementation, but would not include

the benefits of having readable and readily modifiable code and language-homogeneity,

which are both important to the goals of the project. Another possibility would be to

utilize the C language bindings (called Loci) by encapsulating them within a native

Node.js module, but this would have similar drawbacks; it is difficult and unintuitive

to translate between C/C++ and Node.js. Furthermore, unlike JavaScript modules,

C/C++ modules are not portable between platforms unless their system calls are
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extensively wrapped in precompiler directives. In summary, use of LoxiGen would

not be a good fit for a project whose goal is to be easily adopted and extended by

graduate students.

5.2.2.2 Libfluid.

Libfluid is an open-source (Apache 2.0 license) set of C++ classes for building,

encoding, and decoding OpenFlow messages which is written in C++, supporting

OpenFlow versions 1.0 and 1.3 [46]. Use of this library would also require encapsulation

as a native module, bringing the same drawbacks as use of LoxiGen. Furthermore,

since its creation several years ago, there has been almost no work or maintenance

done on the library, nor extension into newer versions of the protocol, indicating

possible abandonment by its authors.

5.2.2.3 Ryu.

Ryu is an open-source (Apache 2.0 license) OpenFlow controller and OpenFlow

library created by Nippon Telegraph and Telephone (NTT) Communications Corpo-

ration which is written in Python [47]. It is widely used, high-quality, and actively

maintained. However, its use creates performance problems. Using it with Node.js

would require running one or more Python processes with inter-process communication

(IPC) to carry data back and forth between the Python and Node.js processes. Besides

limiting performance to that of Ryu itself, the IPC required introduces additional

overhead, which would reject the goal of high-performance.

Ryu’s internal implementation is not as simple as a direct Node.js implementation

due to the nature of Python. In order to achieve reasonable performance, Ryu

uses the greenlet and eventlet third-party libraries to gain high concurrency with

asynchronous communication. Use of these libraries enhance Ryu, as they increase
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concurrency without the complications of shared memory management, but add their

own drawbacks. As they are not part of the Python standard library, they must

wrap related standard library functions during run-time to ensure compatibility. This

technique, possible in many dynamic languages (including JavaScript), is referred

to as “monkey-patching”; it complicates understanding, maintenance, and use of

affected APIs, and is therefore discouraged except as a last resort. In the case of

greenlet, additional complexity is introduced (beyond standard Python and Node.js)

by its explicit event loop instantiation and requirement that the programmer include

jumps between “micro-threads” (a.k.a. coroutines) in order to handle asynchronous

events [48, 49]. In contrast, the single, implicit event loop and non-blocking standard

API of Node.js results in asynchronous code which is easier to read and write while

maintaining better performance in I/O-bound applications [50].

5.2.2.4 Language Homogeneity.

As none of the above options are written for Node.js, the use of their libraries with

Node.js would have the drawback of breaking language and platform homogeneity.

This would reduce flexibility in choice of data structures for how to represent OpenFlow

messages, as they all (necessarily) impose their own design decisions on the structure

of messages. It would also represent a larger barrier to adoption by students with

limited time, as it would require some level of mastery of multiple runtime systems

and languages.

5.3 Runtime System: Node.js

The library is built on the Node.js runtime system. This system was chosen for

its cross-platform design, relative high performance, and ease of use, all of which

align well to the stated goals for this library. Node.js is a cross-platform runtime
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system built on Google’s V8 engine and the libuv asynchronous I/O library. Node.js

is implemented with a combination of C++ and JavaScript [51].

5.3.1 V8.

V8 is an engine to run JavaScript developed by Google primarily for use in the

Chrome web browser. It features a Just-In-Time (JIT) compiler supporting speculative

optimizations. While all JavaScript is JIT compiled into an intermediate bytecode

and run by an interpreter, functions that are run frequently are selectively further

compiled into optimized machine code to increase overall performance [52].

5.3.2 libuv.

libuv is a cross-platform fork of the Libev event library for Unix. The developers

of Node.js created libuv in order to extend Node.js to support Microsoft Windows.

Libev has since been removed from Node.js, and libuv is used in Node.js to handle

event-driven I/O for Node.js while keeping the same API across all platforms. libuv is

significant in that its event loop architecture is the basis for the design paradigm of

Node.js [53].

The libuv architecture is shown in Figure 22. In this figure, the boxes drawn

near the bottom of the figure represent lower-level, OS-interfacing components while

components near the top represent APIs that interface with Node.js.

5.3.3 Cross-Platform Asynchronous Programming.

Each operating system supported by libuv provides its own asynchronous event

notification mechanism, and these are shown as components in Figure 22. epoll,

kqueue, event ports, and IOCP are the asynchronous event notification mechanisms of

Linux, FreeBSD/macOS, Solaris, and Windows, respectively. While these features can
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Figure 22. The libuv architecture [53]

be used to the same effect, each one varies both syntactically and semantically from

the others. This illustrates the main feature of the libuv library, which is to abstract

over these operating system details and present one unified, cross-platform API for

asynchronous I/O.

However, these asynchronous event notification mechanisms only apply to certain

system calls. Other system calls, such as those related to the file system and Domain

Name System (DNS) lookups, are only provided as blocking calls. To handle these

synchronous, blocking calls in an asynchronous manner, libuv maintains a thread pool.

By default, this thread pool is made up of four threads. This is shown at the bottom

right of Figure 22. Whenever such a call is made, it is assigned to a thread which can

block while the rest of the program executes in the event loop.

5.3.4 Event-Based Programming.

Node.js is built on libuv, which handles asynchronous programming with an event

loop, as shown in Figure 23.
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Figure 23. The libuv event loop [53]

While traditional network servers (e.g., Apache) make heavy use of multithreaded

programming to serve many requests concurrently, Node.js eschews this model for event-

based, asynchronous programming. The motivation for this is a simpler programming

model while maintaining a high degree of concurrency over I/O-bound workloads. In

comparing the approaches, one author expands on the difficulties of the former:

Even though many developers have successfully used multithreading in
production applications, most agree that multithreaded programming is
anything but easy. It’s fraught with problems that can be difficult to isolate
and correct, such as deadlock and failure to protect resources shared among
threads. [54]

I/O tasks, by nature, run orders of magnitude slower than tasks involving pure

computation. By implementing non-blocking calls for these tasks, the main loop of

the program can continue to process other events while the I/O-related task continues

in the background, on a separate thread. When a task completes, the main loop gives

any results to “listening” functions by way of a callback or event notification. libuv
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cooperates with the operating system to manage background work through polling or

threads, depending on the platform, in a way which keeps the platform-specific details

transparent to the user of the library.

libuv implements a single-threaded event loop which continually checks for new

events and handles callbacks associated with those events. libuv’s event-loop pattern

(and therefore Node.js) can yield programs that are higher-performing, simpler, and less

prone to error than traditional patterns. By abstracting away the details of handling

multi-threaded logic, the library shields the user from having to use semaphores,

mutexes, or other safety mechanisms for shared memory, which makes code both

simpler and less prone to error. This method also avoids the memory overhead incurred

in the traditional model by having a static number of threads or processes ready to

handle the expected workload from connecting clients.

libuv embraces asynchronous, non-blocking calls for I/O-intensive tasks in order

to keep from blocking the event loop and maintain good performance. I/O-intensive

tasks typically include tasks such as reading or writing a file from a disk, sending or

receiving data over the network, or printing data to the screen.

5.4 Programming Language: TypeScript

5.4.1 JavaScript Alternatives.

By choosing Node.js as the platform, the de facto and eponymous choice for

language is JavaScript, or more precisely ECMAScript 2015 (ES2015) [55]. While

the language is being actively developed and extended as the ECMAScript standard

by the standards committee “TC-39”, JavaScript still contains many peculiarities

that are often confusing to newcomers. Some examples include prototypal inheritance,

implied global variables, global scoping, dynamic “duck” typing, and unintuitive

type checking semantics (a.k.a. “truthiness”). These have been well-documented in
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Douglas Crockford’s book, Javascript: The Good Parts [56]. A host of languages

that compile to JavaScript have been developed to attempt to address these issues,

including CoffeeScript, Elm, Google’s Dart, and Microsoft’s TypeScript.

5.4.2 TypeScript Features.

TypeScript is a strict superset of JavaScript developed by Microsoft. Typescript

can help to bridge the gap to JavaScript for programmers who are already familiar with

languages like C/C++, C#, and Java by providing explicit types with type inference,

static type checking, generics, enumerations, and interfaces. It also brings many of the

latest features from ES2015 which may not yet be implemented in browsers or Node.js,

like traditional class-based inheritance, iterators, generators, modules, decorators,

and async/await function keywords. It also provides a “compile-down” feature to

target any of several older versions of JavaScript, allowing the developer to choose the

required level of compatibility for older runtime systems, at the cost of some features

which cannot be compiled down (e.g., generators).

5.4.3 TypeScript Components and Tools.

TypeScript provides a compiler and language server which work to translate

TypeScript source into plain JavaScript and provide realtime error-checking and

autocompletion hints, respectively. In the simplest cases, the “compiled” TypeScript is

simply JavaScript with the types removed. During compilation, some non-JavaScript

features (e.g., enumerations) are implemented in JavaScript with helper functions.

While types and some other features have no run-time component and will simply

be removed from the output, the type-checking, autocompletion, and other features

provided by them through the language server during development are a tremendous

aid to the programmer. The error-checking and autocompletion features have been
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integrated into many prominent editors and development environments, including

Microsoft’s suite of Visual Studio products.

5.4.4 TypeScript Interoperability.

Since TypeScript compiles to readable JavaScript, it is interoperable with any

other JavaScript or Node.js language; the API of the framework can be consumed by

applications written in any of the languages listed above, making it easy to extend.

Furthermore, Node.js provides an API and build tool to include modules written in C

or C++ which opens another avenue for extension of the framework.

5.4.5 TypeScript Benefits.

Anders Hejlsberg is the creator of TypeScript and the lead C# architect at

Microsoft, and previously created Turbo Pascal and Delphi at Borland. He promotes

TypeScript as a useful JavaScript development tool that becomes more useful as the

project grows in size, eventually becoming a necessity for code maintainability [57].

The first version of this library was written in CoffeeScript. CoffeeScript is another

compile-to-JavaScript language with a simple and functional style that promotes

readability [58]. However, as the library grew in size it soon became unmanageable.

Adopting TypeScript meant a non-trivial amount of extra work to rewrite the code

base, but it was proven worthwhile. Switching to TypeScript significantly improved the

quality of the code, eliminated classes of errors, and noticeably increased productivity

in extending and building on the project.
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5.5 Implementation

5.5.1 OpenFlow Versions.

The library implements the two most popularly used versions of the OpenFlow

switch protocol, versions 1.0 and 1.3. Each of the OpenFlow messages and major

structures that are used by those messages are implemented as classes. There are 22

message types in version 1.0, and 30 in version 1.3. The important structures include

Match, Action, Port, Queue, Instruction (1.3 only), and OpenFlow eXtensible Match

(OXM) (1.3 only). Each message and structure class has its own encode and decode

methods.

5.5.2 Encoding and Decoding OpenFlow Messages.

Encode methods read the structured data in the message property of the instance

and return a raw buffer ready to be written to a socket. Decode methods are static

methods that take a raw buffer and parse it into the message property. The library

exposes a top-level decode function which takes a buffer of either version and any

message and returns an instance of that decoded message. Sub-structures of messages

(Match, Action, Port, Queue, Instruction, or Oxm) are instantiated as required when

decoding, and have their encode methods called by the parent’s encode method.

5.5.3 Instantiating and Validating OpenFlow Messages.

Messages and structures can be built by calling new on the class, in which case it

will be populated with default values from the schema, or given default values in the

constructor. Structures can be built first and then attached to the parent message;

for example, a program requiring a new flow modification message (FlowMod) can first

instantiate and configure the Match, Action, and Instruction structures and then

attach those to a new FlowMod message. The message can also be validated against
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the schema before being encoded. As a result, building complex OpenFlow structures

is relatively simple. For example, Figure 24 shows the creation of a FlowMod as well

as its associated Match, Action, and Instruction, along with the attachment of these

pieces at the end to form a complete FlowMod message. The last line of the figure then

encodes the message into a binary buffer, ready to be transmitted on a socket.

1 // Create FlowMod

2 let fm = new of13.FlowMod();

3 fm.message.header.xid = 0x01;

4 fm.message.buffer_id = 0x1234;

5 fm.commandVal = of13.OFPFC_ADD;

6 fm.flagsVal = of13.OFPFF_SEND_FLOW_REM;

7 fm.message.hard_timeout = 0;

8 fm.message.idle_timeout = 30;

9 fm.message.priority = 10;

10

11 // Create match

12 let ma = new of13.Match();

13 ma.oxm_fields = [new of13.Oxm({

14 oxm_field: "OFPXMT_OFB_ETH_DST",

15 oxm_value: sm.dstmac,

16 })];

17

18 // Create instruction, action

19 let ins = new of13.Instruction();

20 ins.typeVal = of13.OFPIT_APPLY_ACTIONS;

21 let act = new of13.Action();

22 act.typeVal = of13.OFPAT_OUTPUT;

23 act.port = sm.dstport;

24 act.max_len = of13.OFPCML_NO_BUFFER;

25

26 // Attach instantiated match, action, instruction

27 fm.message.match = ma;

28 ins.actions = [act];

29 fm.message.instructions = [ins];

30

31 let buffer = fm.encode();

Figure 24. Construction and encoding of an OpenFlow 1.3 FlowMod message
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Figure 25 shows the directory structure of the library source code. In this figure,

openflow.ts is the top-level file which is automatically included when the library is

imported. That top-level file then includes the individual versions, of10.ts and of13.ts,

which import all enumerations, messages, and structures for that version. Note that

as TypeScript is a compile-to-JavaScript language, the actual files loaded by Node.js

end with .js instead of .ts. This is transparent to the user of the library, as all files

in the package are already compiled to JavaScript.

5.5.4 Testing Library Conformity to Specifications.

The OpenFlow switch specification documents are sparing in explanations and

examples, instead relying mostly on excerpts from the C header file openflow.h to

provide most of the details. Additionally, conventions like property names, padding

around variable-sized structures, and whether padding is included in length values are

inconsistent, even within the same OpenFlow version.

As a result, extensive and detailed tests are required to ensure that the library

properly instantiates, encodes, and decodes the messages so that it will actually be able

to communicate with OpenFlow switches, whether they be hardware or software. Each

message and structure for each version contains tests for instantiation, encoding, and

decoding. Additionally, there are tests to ensure proper error-handling for malformed

buffers, schema validation errors, and version or message code mismatch.

The term test coverage, common in the test driven development process of software

development, refers to the percentage of code that is covered by the tests in aggregate.

The idea is to ensure that tests cover all code paths, to the extent possible, such that

no portion of the software is left untested, reducing the chances of bugs. Overall, the

node-openflow library has 94% coverage of code statements and 95% of functions. The

portions of code without tests are mostly related to the Error message class which is
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1 src

2 |-- benchmark.ts

3 |-- decoders.ts

4 |-- encoders.ts

5 |-- of10

6 | ... (36 lines omitted)

7 |-- of10.ts

8 |-- of13

9 | |-- enumeration.ts

10 | |-- messages

11 | | |-- AsyncConfig.ts

12 | | ... (32 lines omitted)

13 | | |-- TableMod.ts

14 | | -- instantiate.ts

15 | |-- messages.ts

16 | |-- structures

17 | | |-- Action.ts

18 | | |-- Instruction.ts

19 | | |-- Match.ts

20 | | |-- Oxm.ts

21 | | |-- Port.ts

22 | | |-- Queue.ts

23 | | -- QueueProperty.ts

24 | -- structures.ts

25 |-- of13.ts

26 |-- openflow.ts

27 |-- test

28 | ... (12 lines omitted)

29 |-- utilities

30 | |-- bitutil.ts

31 | -- readerwriter.ts

32 -- utilities.ts

33

34 10 directories, 98 files

Figure 25. Tree view of library source directory
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only partially implemented at this time. While improving test coverage may increase

code quality, it would not necessarily be advantageous to bring these numbers to 100%;

a better goal would be to improve the quality of the tests that already exist, as there

are several cases where a function or method is tested with only one or two inputs of

the range of inputs it could possibly be expected to handle.

An example of testing the proper encoding of the OXM class is shown in Figure 26.

The test asset is declared in lines 2–11, which is an OXM class that describes and

IPv4 address, in this case, 192.168.0.12. Lines 14–23 run the current battery of tests.

Line 18 instantiates the test object, line 19 encodes it to a buffer and translates it

into a hexadecimal string, and line 20 compares the results of this encoding to the

correct answer stored in the test.

Output of all tests running is shown in Figure 27. The encoding and decoding

methods of each class are tested against stored correct values, and a statement is

supplied denoting the test coverage of the overall codebase.

5.6 Future Work

An obvious improvement to the library would be to support more OpenFlow

versions. This would not be difficult, as the structures and methods are already in

place. However, each specification is fairly long, with each newer one becoming longer

than the previous, so it is tedious. The work would have to start by updating the

schema (Chapter IV). The next versions to target would be versions 1.4 and 1.5 (the

latest). There would not be a reason to implement 1.1 or 1.2, as any systems that old

would fall back to 1.0, and newer systems at least implement 1.3.

Another improvement would be to reduce redundancy by further consolidating

frequently-used structures into common classes. Before doing this, versions 1.4 and
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1 # YAML test asset

2 OFPXMT_OFB_IPV4_SRC:

3 obj:

4 oxm_class: "OFPXMC_OPENFLOW_BASIC"

5 oxm_field: "OFPXMT_OFB_IPV4_SRC"

6 oxm_hasmask: false

7 oxm_length: 4

8 oxm_value: "c0a8000c" # 192.168.0.12

9 oxm_mask: ''

10 buf:

11 "80001604c0a8000c"

12

13 // Test runner

14 test("encoding", t => {

15 for (let name in tests) {

16 if (tests.hasOwnProperty(name)) {

17 let test = tests[name];

18 let o = new Oxm(test.obj);

19 let buf = o.encode().toString("hex");

20 t.is(buf, test.buf);

21 }

22 }

23 });

Figure 26. Test asset and runner for proper OXM encoding
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Figure 27. Output from all tests running on library
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1.5 should be examined for similarities and differences to the already implemented 1.0

and 1.3.

Finally, the most interesting improvement to the library would be to determine

how to decorate the schema (discussed in Chapter IV) such that the library can be

reduced to a series of function-generating functions for encoding and decoding each

message and structure. The benefit would be a substantially reduced codebase to

maintain as well as making it nearly trivial to implement new versions of the protocol

by simply writing decorated YAML specs.
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VI. rxdn Framework: Modular Network Control with
Reactive Programming

6.1 Introduction

This chapter builds on the library developed in Chapter V. The node-openflow

library is usable by itself as a foundation on which to create a controller application, and

a few examples are included in its repository. However, such a bare-bones approach

is not very productive, as it only provides a means of encoding, decoding, and

checking validity of OpenFlow messages. Therefore, this chapter contributes “rxdn”, a

framework which enhances productivity in writing network control applications. The

name “rxdn” is a portmanteau combining the “Rx” prefix used by Microsoft’s Reactive

Extensions (ReactiveX) and the last two letters of the acronym SDN, highlighting the

framework’s design on the ReactiveX programming pattern and its embodiment of

the basic principles of SDN.

Similar to the library node-openflow, this framework is written on top of the library

to try to fulfill the following goals:

1. Easy to understand and extend

2. Provide intuitive means of network application modularity

3. Throughput and latency performance exceeding that of Ryu

Approaches to dealing with asynchronicity and modularity are covered as related

works in Section 6.2. The application of these works to the design and implementation

of the rxdn framework is covered in Section 6.3. Finally, Section 6.4 examines future

directions for the library. The performance of the library is evaluated in Chapter VII.
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6.2 Related work

This section describes approaches used by other OpenFlow controllers to solve

the same design challenges of rxdn. It also covers some building blocks previously

unrelated to SDN which were used directly—or as inspiration for—its design in dealing

with the problems of asynchronicity and modularity.

6.2.1 Asynchronicity.

Where some platforms handle concurrency through parallelization (multiple threads

or processes), Node.js is built for handling concurrency with non-blocking callback

functions. This has important consequences to any code written for Node.js in which

performance is at all important.

It is easier to write code which will run on a single thread than code which will

run on multiple threads or processes, as there is no need to handle the intricate

details of thread-safe memory access, including semaphores, mutexes, or in the case

of processes, inter-process communication. However, it must be understood by the

programmer that there is a single event loop, and if any code in the user’s program

blocks without relinquishing control, the entire program will block. Instances where

blocking may occur include reading from or writing to slow resources, such as hard

disks and network sockets. CPU-intensive functions must be written such that they

periodically relinquish control or they will similarly stall the event loop.

6.2.1.1 Yielding, Processes, and Threads.

Node.js is designed specifically for I/O-bound and not CPU-bound problems. While

most network control applications are not CPU-bound problems, it is possible to

envision an advanced SDN application that would be. For example, an advanced

intrusion prevention system (IPS) that analyzes and blocks traffic in real time could
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require a large amount of computing power to classify network traffic. For this reason,

it is worth briefly exploring the possible options of the platform to handle such

problems.

The easiest solution is to have the long-running function periodically yield control

back to the event loop. In Node.js, this can be done with the built-in, global function

setImmediate(callback[, ...args]). This could be used within a CPU-bound function

such that it runs a certain number of iterations before putting itself as the callback

with some argument to indicate how to resume. While better than blocking the entire

application, this both increases the overall time the CPU-bound function takes to

complete and slows the number of iterations per time period of the event loop.

There are two built-in means to perform multiprocess execution in Node.js. With

these, a separate process can be used to handle CPU-bound portions while not blocking

the event loop of the main process. They are the API functions child_process.fork

and cluster. They are slightly different versions of the same functionality, which is

to spawn a new process, load it with some predetermined program, and then use

serialized interprocess communication to move data or signals back and forth. There is

overhead to starting a new process, there is no shared memory (which would be fast),

and each communication between the processes is additionally burdened by having to

serialize and deserialize any objects that need to be passed.

Outside of built-in approaches, there are a few native modules (modules which

are at least partially written in C++ and bound to the V8-Node API) which can

be used to implement a multithreaded application in Node.js. The most popular

of these is node-webworker-threads which conforms to the relatively new Web Worker

standard made by the World Wide Web Consortium (W3C) [59]. The Web Worker

standard specifies a public API for web browsers to allow web page JavaScript scripts

to spawn background worker threads separate from the main thread. As with Node.js
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multiprocess execution, this standard also requires all data to be serialized and passed

via IPC.

In summary, Node.js is not currently the correct choice of platform for CPU-bound

problems, and increasing concurrency for I/O-bound problems in Node.js is better

solved through one of the methods described below.

6.2.1.2 Callback-based.

As described in Chapter V, Node.js is a good framework on which to build SDN

applications, as such programs are by nature I/O bound and therefore require a high

degree of concurrency. Node.js naturally encourages concurrent programming with

its asynchronous, callback-driven API. For most non-blocking API calls, this takes

the form of action(arguments, callback), where callback is a function that takes two

arguments: an error object and a result. Within the callback, if the error argument

is undefined, then the callback may assume that the action completed successfully.

Otherwise, the error object is populated and the callback function may chose to throw,

print, or ignore it [51]. This style is often called the “error-first” callback style. As a

model for concurrency it is both simple and effective. This is not a new idea, as it

was very nearly described as continuation passing style (CPS) as early as 1975 in the

implementation of the SCHEME language interpreter [60].

However, simply attaching nested callbacks as anonymous functions for a series of

computations which rely on the results of asynchronous computation yields code that

is difficult to understand and maintain. Overly-nested blocks make error handling

tedious, as it is difficult to see where and if errors are handled. For these reasons, such

code has ominously been referred to as “Callback Hell” or the “Pyramid of Doom” [61].

An example of overly-nested code is shown in Figure 28. While somewhat contrived,

this example is not far from typical error-first callback style code written in Node.js to
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connect several asynchronous functions or servers together. Notice in the example how

the code for an unmatched ID (lines 22–24) is separated from the place the lookup

happens (line 8), confusing the flow of the block among a myriad of braces.

1 // Read a file, check an ID in database, write to a socket

2 fs.read(file, (err, contents) => {

3 if (err) {

4 console.error("Error reading file", err);

5 process.exit(1);

6 } else {

7 let {id, value} = parse(contents);

8 db.has(id, (err, result) => {

9 if (err) {

10 console.error("Error connecting to database", err);

11 process.exit(1);

12 } else {

13 if (result) {

14 socket.write(value, (err) => {

15 if (err) {

16 console.error("Error writing to socket", err);

17 process.exit(1);

18 } else {

19 console.log(`Sent ${value}`);

20 }

21 })

22 } else {

23 console.log("ID not found");

24 }

25 }

26 })

27 }

28 })

Figure 28. An example of “callback hell” [derived from 61]

While the confusing pyramid structure can be mitigated by separating out and

naming all anonymous callback functions, error handling in such situations is still

overly complex. A number of language changes, API changes, and libraries have been

written to try to better address the problem. These include the addition of generators
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and promises to JavaScript in ECMAScript 2015 and the proposed addition of async

and await function keywords which build on promises [55].

6.2.1.3 Promises.

The term “promise” was used to mean a future but possibly unresolved value as

early as 1976 [62]. Any callback function can be wrapped in a promise. To overcome

nesting and its related error-handling problems, promises can be chained together,

forwarding the asynchronous result from one function to the next. Each of these

functions is called with the result of the previous when it is ready, returning its own

promise, ensuring properly-ordered, non-blocking, asynchronous execution [63]. An

example of this is given in Figure 29 (from the popular promise library Bluebird.js).

Lines 3–16 show the traditional version with try and catch, while lines 20–28 show

the same code using promises. Notice how line 20 chains together sequential functions

with the method then, while lines 23 and 26 continue chaining by adding error handling

functions.

While promises do expose a catch method and improve upon error-first callback

style, this type of error-handling is still less powerful than traditional, synchronous

error-handling using try, catch, and finally. The async and await keywords were

designed specifically to allow synchronous-style function calls and error handling for

asynchronous code.

6.2.1.4 Async/Await.

While promises are a refinement of the error-first callback pattern, the keywords

async and await are further refinements to JavaScript promises. These keywords were

added to C#.NET 5.0 in 2012, and due to their popular adoption there, have been
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1 // Error-first callbacks: read a JSON file, parse it, handle errors

2

3 fs.readFile("file.json", function (err, val) {

4 if (err) {

5 console.error("unable to read file");

6 }

7 else {

8 try {

9 val = JSON.parse(val);

10 console.log(val.success);

11 }

12 catch (e) {

13 console.error("invalid json in file");

14 }

15 }

16 });

17

18 // Promise version:

19

20 fs.readFileAsync("file.json").then(JSON.parse).then(function (val) {

21 console.log(val.success);

22 })

23 .catch(SyntaxError, function (e) {

24 console.error("invalid json in file");

25 })

26 .catch(function (e) {

27 console.error("unable to read file");

28 });

Figure 29. Comparing error-first callback to promises [64]
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proposed for inclusion into ECMAScript 2017 with TypeScript 2.0 already supporting

them [55, 65, 66].

The async keyword is used to decorate a function declaration, indicating that the

function may include asynchronous await function calls. In other words, only those

functions marked with async may include await keywords, and including them in other

functions is an error.

In this pattern, the async keyword is added before any function call which returns a

promise when the result of that promise is required before any further lines of code in

the function are executed. As a result, the program does not block, but asynchronously

waits for the resolution of the promise at that line. An example is shown in Figure 30.

The function on line 2 is declared with the async keyword, so the keyword await can

be used within the function body (lines 4, 10, and 12). Line 19 calls this function and

can chain together then and catch keywords exactly as if the function were declared

using promises.

The largest benefit in this style comes from being able to use the traditional try,

catch, and finally error handling keywords, as if the entire function were synchronous.

Just as promises will silently “swallow” errors if no catch method is added, this pattern

is built on promises and will do the same; in fact any async function returns a promise.

While this greatly simplifies code, making it appear synchronous, users of this

style still need to be fluent in the underlying promises upon which it is built in order

to use it properly.

6.2.1.5 Reactive Extensions.

Reactive Extensions is a set of libraries first designed and implemented by Microsoft

with the goal of making asynchronous programming easier and more powerful. It

combines concepts from observer and iterator patterns with functional programming
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1 // Read a file, check an ID in database, write to a socket

2 async function readCheckWrite() {

3 try {

4 let contents = await readFileAsync(file);

5 } catch (err) {

6 console.error("Error reading file", err);

7 process.exit(1);

8 }

9 let {id, value} = parse(contents);

10 let dbResult = await dbHasAsync(id);

11 if (dbResult) {

12 let socketResult = await socketWriteAsync(value);

13 console.log(`Sent ${value}`);

14 } else {

15 console.log("ID not found");

16 }

17 }

18 // Output "Complete" or log any uncaught error

19 readCheckWrite().then(console.log("Complete")).catch(console.error);

Figure 30. An example of using async and await for asynchronous chaining

concepts, making these available to a variety of languages [67]. One of its creators

summarizes its purpose as follows

The goal of Rx is to coordinate and orchestrate event-based and asyn-
chronous computations such as low-latency sensor streams, Twitter and
social media status updates, SMS messages, GPS coordinates, mouse moves
and other UI events, Web sockets, and high-latency calls to Web services
using standard object-oriented programming languages such as Java, C#,
or Visual Basic. [68]

The collection of Rx libraries are together described as a “polyglot implementation”,

as they are available to the languages listed in the 2012 publication above and more

recently have been extended to Clojure [69], JavaScript [70], Scala [71], Swift [72],

and others. Each implementation is written to fit well with the idioms of the target

language. As a result, the concepts are easily carried from one language to another,

but the classes, interfaces, and operator names may change. Each implementation is

named with the prefix “Rx” followed by the name of the language; the implementation

87



for JavaScript is called RxJS [70]. The official API for RxJS gives an interesting

example motivating its use within a web browser by showing how to write code that

will get the x and y values of mouse clicks at most once per second, which is shown

in Figure 31. Notice the dearth of local variables in the latter block (lines 16–20)

compared to plain JavaScript (lines 3–12).

1 // Plain JavaScript:

2

3 var count = 0;

4 var rate = 1000;

5 var lastClick = Date.now() - rate;

6 var button = document.querySelector('button');

7 button.addEventListener('click', () => {

8 if (Date.now() - lastClick >= rate) {

9 console.log(`Clicked ${++count} times`);

10 lastClick = Date.now();

11 }

12 });

13

14 // With RxJS:

15

16 var button = document.querySelector('button');

17 Rx.Observable.fromEvent(button, 'click')

18 .throttleTime(1000)

19 .scan(count => count + 1, 0)

20 .subscribe(count => console.log(`Clicked ${count} times`));

Figure 31. Capturing throttled mouse click locations with and without RxJS [70]

Drawbacks of using RxJS (or any Rx library) include the initial burden of becoming

familiar with its very large API. The Observable class of the current version of RxJS

includes over 20 static and 100 class methods. To be proficient, a user of the library

should be familiar with most of these, as only knowing a few will result in inefficient

hammer-nail style programming (the tendency to treat every problem as a nail if the

only tool you have is a hammer). Marble diagrams included in the documentation
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are a great aid to the Rx novice, as they visually represent the changes each operator

performs to the stream and are quickly understandable.

Marble diagrams are explained by the legend in Figure 32, and examples are shown

in Figures 33 through 36. Note that while all these examples are shown as emitted

integers, Observables are generic classes and may emit items of any type, including

complex objects or even other Observables. The way to read a marble diagram is

to picture the top line or lines as an initial stream of events that happen as time

progresses from left to right. Below this is an operator drawn as a box. This operator

takes events from the stream or streams and translates them into new events or new

streams of events. These results of the operator are shown below the box.

Figure 33 shows how the interval operator can be used to emit a sequence of

events sequentially as given by the time parameter. Figure 34 shows how an arrow

function can be used to transform source events (shown above the map function), in

this case multiplying them by 10 to give the result (shown below the map function).

Figure 35 shows how state can be incorporated into a stream of events with the scan

operator. The accumulator function is provided the last emitted event value, x, and

the current incoming value, y. It uses the specified function to combine them—in this

case, addition—and emits the resulting intermediate value. This operator can also

take an optional seed value. Figure 36 is an example of an operator that combines two

Observables into one. In this case, it concatenates the string values of the incoming

events as its output.

Debugging code that passes through Observables can be problematic, as each line

of the user’s code is interpolated with many lines of Rx library code. To mitigate this,

some debuggers, like the one in Visual Studio Code, include an option to debug “only

my code”, skipping over third-party and platform libraries.
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Figure 32. Rx Marble Legend [67]

Figure 33. Rx interval operator creates an Observable that emits a sequence of integers
spaced by a given interval [67]

Figure 34. Rx map operator transforms items according to a function [67]
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Figure 35. Rx scan operator applies an accumulator function over the source [67]

Figure 36. Rx combineLatest operator combines the latest item emitted by each source
based on the given function [67]
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Finally, stack traces printed from errors in code executing in an Observable can be

so long as to be unusable. In recognition of this, the latest version of RxJS (version 5)

has a specific design goal to shorten stack traces.

6.2.2 Modularity.

Network application modularity refers to the facilities provided by the controller

framework to enable multiple, independent applications to be run at the same time.

The user of the controller is the network administrator or operator who is writing or

applying prewritten modules of functionality as a set of network control applications

applied to the controller.

For example, for a given controller, a user may have a layer 2 switch module

that remembers switch port locations of MAC addresses and uses this information to

send FlowMod messages so that traffic is efficiently switched to the proper ports. The

user may also have an access control list (ACL) module that prohibits certain traffic

as specified by MAC address on certain links. The user may wish to install these

and other modules on the switch to get the functionality of both, without having to

rewrite both into a single switch/ACL module. The user probably also needs the

ability to specify, for times where the output of the two may conflict, which module

has precedence. Here, it makes sense to apply the ACL first, and not waste resources

capturing the locations of blacklisted MAC addresses. With any number of possible

modules it is important to expose a clean, consistent method for prioritization to the

user.
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6.2.2.1 Existing controllers.

Some controllers simply yield the matter of modularity completely to the user,

expecting them to handle the nuances of instantiation, configuration, and prioritization

of separate pieces of functionality. This is the case for the Onix distributed controller:

Just to be clear, we only imagine a single “application” being used in any
particular deployment; this application might address several issues, such
as routing and access control, but the control platform is not designed to
allow multiple applications to control the network simultaneously. [17]

Other controllers simply utilize the module features of the host language and

platform, expecting users to be familiar with constructing modules in that language

and importing and connecting them together in a single application given to the

controller. This is the means of modularity for Python-based controllers like POX

and Ryu, as well as some Java-based controllers. In most cases, each module provides

a set of callback functions that specify a certain type of packet, message, or event to

which they should be applied. This approach is effective but naive; multiple callback

functions may be called for a given message, each applying opposing actions to the

message. It is left to the user to wrap these in a parent callback function to prioritize

and deconflict the modules. This does not scale well when many modules are needed,

as the control flow is not explicitly defined but hidden in a series of messy parent

modules and chained callbacks.

Finally, some controllers make use of language features like operator overloading

to provide an explicit means of modularity. The “Frenetic family” of controllers,

Frenetic-OCaml and Pyretic, solve the problem by implementing a DSL that provides

sequential and parallel composition operators. For example, in Pyretic [24], the

sequential (>>) and parallel (+) operators along with the Boolean “and” (&) can be

used in a single expression to create a policy that performs destination IP routing

across two switches:
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(match(switch=A) & match(dstip='10.0.0.1') >> fwd(6)) +

(match(switch=B) & match(dstip='10.0.0.1') >> fwd(7))

These two lines are concatenated with a + so that they work in parallel. Each one

matches on two specific conditions: an originating switch and a destination IP address.

When those two conditions match, the sequential operator (>>) is used to perform an

action, which in this case is to forward the matching flow out to the specified port

(port 6 for switch A, and port 7 for switch B).

This method is effective and interesting from a research perspective, as it redefines

modules as functional building-blocks that can be composed using a specific algebra.

The main drawback to such an approach is that it does not resemble traditional

programming, forcing a detailed understanding of a totally new paradigm on potentially

novice students and researchers.

The library node-openflow (described in Chapter V) can be used directly to

construct a controller, and provides simple examples for applications or benchmarking

in a few different styles, including callback functions (via the Node.js EventEmitter

API), Reactive Extensions (Rx) Observables, and the Node.js Transform Stream

interface. Of these, callbacks are the easiest to implement for simple projects, with

Observables being a better choice for larger projects, while transform streams provide

the best performance. While a set of transform streams can be placed in a pipeline

with high performance, the flow control structure is very rigid, and degrades to poor

performance and/or becomes difficult to program when multiple parallel pipelines are

required.

Instead of these approaches, rxdn uses RxJS Observables, but wraps them into

a structured design which makes them more straightforward to use, similar to the

Cycle.js web application framework.
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6.2.2.2 Cycle.js.

Cycle.js is a web application framework initially designed around RxJS version

4, but has since been updated and expanded to support version 5 as well as several

other reactive programming libraries. While RxJS could be used itself or within

other frameworks, Cycle.js demands a more strict approach by abstracting the entire

web application into a single run function which ties together a main function and

a set of drivers. Side effects, including network communication, console logging, or

outputting HyperText Markup Language (HTML) to the document object model

(DOM) are separated as drivers. To conform to the framework, the main function

and any functions it calls should be side-effect free functions [73]. This structure is

represented in Figure 37.

Figure 37. Cycle.js high-level application structure [73]

This separation of logic and effects is inspired by functional languages like Haskell.

Haskell applies concepts from category theory to try to make a programming envi-

ronment where code is safer, easier to test, and more powerful. Haskell uses concepts

like referential transparency (side-effect free functions), immutability, functors, and
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monads to achieve these goals. Rx, Cycle.js, LINQ, and other libraries and frameworks

inspired by the functional programming paradigm borrow one or more of these con-

cepts, applying them to more traditional imperative or object-oriented programming

languages.

Without going into a tutorial on functional programming in Haskell, it is clear

that some of these concepts, while initially constraining, yield immediate benefits to a

large code base. For example, referential transparency can allow chaining together

functions in powerful ways, while also enabling lazy evaluation. Lazy evaluation has

many uses, including being able to perform computations on just a subset of a large

collection without iterating over the entire data set. Concepts like partial application

and monads can be used to perform powerful generic queries over collections [74].

Also, by having a clear delineation between code which contains side effects or mutable

objects and functions that do not, the latter group is far easier to test for correctness.

Test methodologies like test driven development (TDD) are often difficult to implement

due to the laborious process of creating test fixtures. These fixtures are predefined

state of instantiated classes, used to test correct behavior of methods in the class when

given some existing conditions. None of that is needed when testing a referentially-

transparent function.

The web development community is littered with half-formed and abandoned

frameworks, but Cycle.js has developed a small but dedicated following in a relatively

short time. Cycle.js builds on Rx and other functional concepts to contribute com-

posable, nested components with a clear and traceable data flow in a way that is

appealing to novice and experienced programmers. A simple and idiomatic “Hello

World” style web application in Cycle.js is shown in Figure 38. It clearly shows the

cycle of how inputs (here, via the sources.DOM Observable) are used to create outputs.

96



1 import Cycle from '@cycle/xstream-run';

2 import {div, label, input, hr, h1, makeDOMDriver} from '@cycle/dom';

3

4 function main(sources) {

5 return {

6 DOM: sources.DOM.select('.myinput').events('input')

7 .map(ev => ev.target.value)

8 .startWith('')

9 .map(name =>

10 div([

11 label('Name:'),

12 input('.myinput', {attrs: {type: 'text'}}),

13 hr(),

14 h1(`Hello ${name}`)

15 ])

16 )

17 };

18 }

19

20 Cycle.run(main, {

21 DOM: makeDOMDriver('#main-container')

22 });

Figure 38. Example “Hello (name)” web application in Cycle.js [73]
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6.3 Design and Implementation

6.3.1 Structure.

Cycle.js is a web application framework, but rxdn is not a web application; it is an

OpenFlow controller written for Node.js. While the languages are the same and the

APIs are similar, there are significant differences between a web application running

in a web browser and a server application running in Node.js. Therefore, Cycle.js

cannot be used directly, as it makes many assumptions about the code running in a

browser and its primary focus is on efficiently writing HTML to the DOM. Therefore,

a tailored structure was created based on the core concepts of Cycle.js to be more

applicable to a server framework which accepts connections from clients (in this case,

switches) and implements behavior based on a set of modules.

The primary abstractions provided by Cycle.js are the run function, the separation

of logic into referentially transparent functions composed by a single main function, and

the separation of side effects (e.g., network communication) into a set of drivers. The

run function is called with main and the set of drivers as its arguments. Each driver is

a function which takes an Observable called a “sink” and returns an Observable called

a “source.” The main function takes the set of sources as an argument passed from run

and returns a set of sinks. These sets are objects where the key is equal to the name

of the driver and the value is the Observable corresponding to that driver. Finally, the

run function ties the sources input and sinks output of main together to the sink input

and source output of each driver. This is represented in Figure 39, specifically with

the main function in a cycle with the DOM driver, which is responsible in Cycle.js for

writing HTML to the DOM, the primary output to the user (this driver is specific to

a web application and is not present in rxdn).

These abstractions clearly delineate the location and structure of each piece of

functionality. It also removes much of the confusion of using RxJS directly. For
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Figure 39. Cycle.js structure with DOM driver [73]

example, RxJS provides Observables, but does not inherently provide answers to

questions like the following:

• At what point should an Observable be subscribed to?

• When should an Observable be unsubscribed?

• Should a given Observable be created as cold, hot, or multicast?

These questions may be straightforward for a simple application that merely requests

some data from a server and displays it, but can become confusing in a large framework.

This structure creates a cycle, which at first seems to present a chicken-and-egg

problem: what does run call first, the main function or each of the driver functions, and

how can the outputs of one function be given as the inputs to another function when

the first function has not yet been called? Simplifying drivers into a single function,

the pseudocode could be:

let sinks = main(sources)

let sources = drivers(sinks)
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This cannot work, as sources is referenced before it is created. In more mathematical

terms, this could be written

a = f(b) (2)

b = g(a) (3)

When combined, this yields a = f(g(a)). By understanding that sources and sinks are

not single-assignment variables, but Observables which represent a stream of events,

it becomes clear that intermediate or proxy Observables can be used to tie together

these function input and output streams (where p represents a proxy):

p = (initialize) (4)

a = f(p) (5)

b = g(a) (6)

p = f(b) (7)

Or in pseudocode,

let sinks = main(sources)

let sources = drivers(sinks)

This problem is solved by Cycle.js (and rxdn) with the use of Subjects. A Subject is

a class which implements both the Observer and Observable interfaces. This means it

can both subscribe to an Observable and itself be subscribed to. As all inputs and

outputs for these functions are Observables, the Subject class can be used to create a

set of proxies which act as intermediaries to tie these functions together. The actual

run used in rxdn is clear and concise and is shown in Figure 40. The interfaces defined

in rxdn are also clear and concise, and help in understanding the run function; these

are shown in Figure 41.
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1 import {Subscription, ReplaySubject} from "rxjs";

2 import {Collection, Component, Drivers} from "./interfaces";

3

4 interface SubjectCollection {

5 [name: string]: ReplaySubject<any>;

6 }

7

8 function makeProxies(drivers: Drivers): SubjectCollection {

9 const proxies: SubjectCollection = {};

10 const names = Object.keys(drivers);

11 names.forEach(name => { proxies[name] = new ReplaySubject(1); });

12 return proxies;

13 }

14

15 function callDrivers(drivers: Drivers, proxies: Collection): Collection {

16 const sources: Collection = {};

17 const names = Object.keys(drivers);

18 names.forEach(name => {

19 let source = drivers[name](proxies[name]);

20 sources[name] = source;

21 });

22 return sources;

23 }

24

25 function subscribeAll(

26 sinks: Collection, proxies: SubjectCollection

27 ): Subscription {

28 const subscription = new Subscription();

29 const names = Object.keys(sinks);

30 names.forEach(name => {

31 subscription.add(sinks[name].subscribe(proxies[name]));

32 });

33 return subscription;

34 }

35

36 export function run(main: Component, drivers: Drivers): Subscription {

37 const proxies = makeProxies(drivers);

38 const sources = callDrivers(drivers, proxies);

39 const {sinks} = main(sources);

40 const subscription = subscribeAll(sinks, proxies);

41 return subscription;

42 }

Figure 40. Run function of rxdn
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1 import {Observable} from "rxjs";

2

3 /** A collection of Observables indexed by key */

4 export interface Collection {

5 [name: string]: Observable<any>;

6 }

7

8 /**

9 * A Component is a function which accepts a source of Observables

10 * indexed by key (a Collection) and returns sources as inputs to

11 * composed Components and sinks as inputs to Drivers. A Component

12 * should not create side-effects, as this is the function of a Driver.

13 */

14 export interface Component {

15 (sources: Collection): {sources: Collection, sinks: Collection};

16 }

17

18 /**

19 * A Driver is a function which takes an Observable (a Sink) and returns

20 * an Observable (a Source).

21 * The Driver is the place to acquire events or data from external sources

22 * and to create side-effects.

23 */

24 export interface Driver<Sink, Source> {

25 (sink: Observable<Sink>): Observable<Source>;

26 }

27

28 /** A collection of Drivers indexed by key */

29 export interface Drivers {

30 [name: string]: Driver<any, any>;

31 }

Figure 41. rxdn interfaces
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6.3.2 Drivers.

A driver is simply a function with accepts an Observable of any type as its sink

and returns an Observable of any type as its source. The run function is responsible

for calling each driver with its corresponding sink and collecting all drivers’ source

Observables into the sources object which is the input to main.

There are three drivers implemented in rxdn, and it is a simple pattern to follow to

add more. The simplest is the console logging driver. As logging is a side-effect, this

functionality can be implemented as a driver. Note that there is nothing technically

stopping a component from including a console.log statement; however, starting with

a trivial console logging is useful to show how components and drivers interact.

The source of the console driver is given in Figure 42. In it, observe that it (and

every driver):

• Subscribes to the input sink Observable

• Performs some side-effect, most likely related to the input sink events

• Returns an Observable, most likely related to the result of the performed side-

effect

In this case, there is no “result” from printing to the console, so the returned Observable

is Observable.never(). This special static instantiation method returns an Observable

which never emits any events. Failing to return an Observable is an error, as the

TypeScript compiler will report, since it does not adhere to the interface of a driver.

Notice that this driver is declared of type Driver<string, void>, which (in TypeScript

notation) denotes that the input is an Observable of type string and the output is

an Observable of type void, the “never” Observable. (Reference Figure 41 for the

declaration of the Driver interface).
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1 import {Driver} from "../interfaces";

2 import {Observable} from "rxjs";

3

4 /**

5 * Logs sink to the console

6 */

7 export const consoleDriver: Driver<string, void> = sink => {

8 /* tslint:disable-next-line:no-console */

9 sink.subscribe(msg => console.log(msg));

10 return <Observable<any>> Observable.never();

11 };

Figure 42. The rxdn console driver

A driver for state is also included. While it is possible to have accumulated state

via the scan operator within a component, the state driver shows how state can be

separated as a side-effect and lays a foundation for distributed state.

The source of the state driver is given in Figure 43. Rather than directly exporting

the driver function, this driver wraps the driver function within a creation function,

allowing the application to provide an initial state with which to kick off the Observable.

As shown in Figure 40, the Subjects tying together the main function input with the

output of the drivers are of type ReplaySubject(1), which means the last emitted item

will be cached and accessible to any subscribers, and for state to be added to by a

component, requires an initial value. The state driver cannot have a hard-coded initial

value as the driver itself is generic, as shown in Figure 43 by its type of Driver<T, T>.

This indicates that the type of the input Observable is the same as the type of the

output Observable.

With this simple implementation, a component can get and set state from one

or more instantiated state drivers. This driver could also be extended as a database

client. For example, if state is kept as a JavaScript object type, this can be serialized

with JSON and sent to a document store database like MongoDB.
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1 import {Driver} from "../interfaces";

2 import {Observable} from "rxjs";

3

4 /**

5 * Generic state driver

6 * @param {T} initialState The initial state to use

7 * @returns {Driver<T, T>}

8 *

9 * @example

10 * const updateState = otherObservable

11 * .map(value => state => state.set("key", value));

12 */

13 export const makeStateDriver: <T>(initialState: T) =>

14 Driver<T, T> = <T>(initialState: T) =>

15 (sink: Observable<(state: T) => T>) =>

16 sink

17 .scan((state, changeFn) => changeFn(state), initialState)

18 .startWith(initialState)

19 .share();

Figure 43. The rxdn state driver

Finally and most importantly, rxdn includes an OpenFlow driver. The OpenFlow

driver accepts connections from OpenFlow switches and maintains a map of socket IDs

to socket objects, allowing it to send any OpenFlow message to any connected switch,

as dictated by the components through its sink input. The type of the OpenFlow

driver is Driver<OFEvent, OFEvent>, where OFEvent is defined in Figure 44; the id field

is a concatenation of the socket remote address and remote port as a string, the event

is an enumerated type indicating why the event is occurring (e.g., a switch connected,

or a message was received), and where appropriate, the type may include an error

object or OpenFlow message object. This is the interface used by each component to

send and receive messages to and from OpenFlow switches. The algorithm for this

driver is given in Algorithm 2.
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1 export enum OFEventType {

2 Connection,

3 Disconnection,

4 Error,

5 Message,

6 }

7

8 export type OFEvent =

9 {id: string, event: OFEventType.Connection} |

10 {id: string, event: OFEventType.Disconnection} |

11 {id: string, event: OFEventType.Error, error: Error} |

12 {id: string, event: OFEventType.Message, message: OF.OpenFlowMessage};

Figure 44. The OFEvent type

Algorithm 2 rxdn OpenFlow driver

subscribe to sink input
for each message event in sink do

socket ← lookup id in sockets map
buffer ← call encode on message
write buffer to socket

end for
source ← create new Observable of type OFEvent

for each new connection do
add socket to socket map
emit new connection
for each new buffer from socket do

messages ← call decode with buffer

for each message in messages do
emit message

end for
end for

end for
return source
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6.3.3 Components.

Components in rxdn are similar to the driver pattern; each component implements

the Component interface declared in the top-level interfaces. As a shortcut, OpenFlow

components can import and implement the OFComponent interface from the OpenFlow

driver. Both interface declarations and their corresponding collections are shown in

Figure 45.

1 // Declared in interfaces.ts

2

3 /** A collection of Observables indexed by key */

4 export interface Collection {

5 [name: string]: Observable<any>;

6 }

7

8 /**

9 * A Component is a function which accepts a source of Observables

10 * indexed by key (a Collection)and returns sources as inputs to composed

11 * Components and sinks as inputs to Drivers. A Component should not

12 * create side-effects, as this is the function of a Driver.

13 */

14 export interface Component {

15 (sources: Collection): {sources: Collection, sinks: Collection};

16 }

17

18 // Declared in drivers/openflow.ts

19

20 export interface OFCollection extends Collection {

21 openflowDriver: Observable<OFEvent>;

22 }

23

24 export interface OFComponent {

25 (sources: OFCollection): {sources: OFCollection, sinks: OFCollection};

26 }

Figure 45. Component interfaces

A very simple component is Hello10, which sends an OpenFlow 1.0 Hello message

to any switch upon its connection to the controller. This component would not
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normally be used by itself, but in conjunction with other small modules to enable

the overall controller functionality. In particular, it is wrapped into a larger Core10

component providing other specification-required functionality, which is in-turn used

by the Switch10 component to provide layer 2 switch functionality. (If OpenFlow 1.3

is desired as the default message type, Hello13, Core13, and Switch13 components are

also provided in the framework). The source for Hello10 is shown in Figure 46.

1 import {OFComponent, OFEventType, OFEvent} from "../../drivers/openflow";

2 import {of10, of13} from "@dancasey/node-openflow";

3

4 /** Sends an OpenFlow 1.0 Hello message upon connection */

5 export const Hello10: OFComponent = sources => {

6 const hello = sources.openflowDriver

7 .filter(m => m.event === OFEventType.Connection)

8 .map(m => <OFEvent> {

9 event: OFEventType.Message,

10 id: m.id,

11 message: new of10.Hello(),

12 });

13

14 return {sources, sinks: {openflowDriver: hello}};

15 };

Figure 46. Component which sends Hello message upon switch connection

The Hello10 component first filters the source Observable from the OpenFlow

driver (sources.openflowDriver) to find any events of type OFEventType.Connection. It

then applies the map operator to transform these incoming events into a new OpenFlow

message event with a new OpenFlow version 1.0 message attached to the event.

The driver will receive the event, find the socket object in its map based on the id

string, encode the attached message object into buffer, and send the buffer on the

corresponding socket. If a component needs to send a message to another switch, it

only needs to reference the appropriate id string for the target switch.
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A component does not need to depend on an incoming event in order to send a

message to a switch. For example, a topology discovery component may need to send

periodic discovery messages; this can easily be accomplished with the static Observable

creation method interval (shown as a marble diagram in Figure 33). Furthermore,

while the component interfaces requires a single Observable output returned to each

driver, multiple concerns can easily by addressed by combining Observables with any

of a host of static and class Observable-combining methods methods, including merge,

combineLatest, race, zip, and more. This provides a huge amount of flexibility while

still constraining the pattern such that each component can be small and simple to

understand.

This driver/component pattern, adapted from Cycle.js and RxJS, is at once simple,

consistent, and easy to extend. Combining this with TypeScript’s powerful code

analysis, correctness checking, and autocompletion (“intellisense”) features makes

rxdn easy to write for and experiment with. It also is a natural fit for modular

composition of functionality, allowing the user to build small, testable, and reusable

blocks of functionality and connect them in a consistent, intuitive way.

6.3.4 Composition.

As alluded to, more advanced components are simply a result of composition of

smaller components. As a top-down example, the layer 2 switch application is a

composition of the components Core10, Switch10, and OFLog (which logs OpenFlow-

related events to the console). The Core10 component is itself a composition of

Echo (which replies to EchoRequest messages), Hello10, and Features (which sends a

FeaturesRequest message to newly-connected switches). The Switch10 component is a

composition of SwitchMemory, PacketOut, and FlowMod. The layer 2 switch application is
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shown in Figure 48 and graphically in Figure 47. The Compose function is shown in

Figure 49.

Core10
Echo
Hello10
Features

Switch10
SwitchMemory
PacketOut
FlowMod

L2 Switch App

 

SinksSources

Drivers

 consoleDriver

openflowDriver

Figure 47. Layer 2 switch application component composition

Figure 48 demonstrates how Compose simply takes an array of components and

a sources collection and returns a sources collection and a sinks collection, which

means the result conforms to the component interface and can be dropped-in to the

main function or another component. The reason for including a sources collection in

the output of each component is now clear: it allows upstream components to filter

out certain events from the stream which have already been handled. Alternatively,

events can be modified or new events added to the sources stream. However, this type

of modification should be limited, as it may begin to break the pattern of keeping

side-effects in drivers, potentially leading to a confusing network application.

The implementation of the Compose function (Figure 49) steps through the sinks

outputs of each component, using the merge method to combine those with the same

key. For sources, it chains the output of one component to the input of the next,

such that earlier components receive the events first and may filter some out. For

example, the Echo component filters out all EchoRequest message events, as it handles

sending the required EchoReply message event, and no further component would need

this message. This is depicted graphically in Figure 50.
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1 import * as rxdn from "../rxdn";

2 import {Observable} from "rxjs";

3

4 interface OFConsoleCollection extends rxdn.OFCollection {

5 consoleDriver: Observable<string>;

6 }

7

8 /**

9 * Example L2 switch controller for OpenFlow 1.0.

10 * Run with `node dist/examples/switch.js`.

11 */

12 const main: rxdn.OFComponent = src => {

13 return <{

14 sources: rxdn.OFCollection,

15 sinks: OFConsoleCollection,

16 }> rxdn.Compose([

17 rxdn.Core10,

18 rxdn.Switch10,

19 rxdn.OFLog,

20 ], src);

21 };

22

23 const drivers: rxdn.Drivers = {

24 consoleDriver: rxdn.consoleDriver,

25 openflowDriver: rxdn.makeOpenFlowDriver({

26 host: "0.0.0.0",

27 port: 6633,

28 }),

29 };

30

31 rxdn.run(main, drivers);

Figure 48. Layer 2 switch application
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1 import {Collection} from "../interfaces";

2

3 /**

4 * Takes an array of components and a sources object and composes the

5 * components such that sources output from one component flow as input

6 * sources to the next, and sinks from each component are merged as

7 * returned as a single sink object.

8 */

9 export const Compose =

10 <T extends Collection>(components: Array<(sources: T) =>

11 {sources: T, sinks: T}>, sources: T) => {

12 let nextSources: T = sources;

13 let componentSinks: T;

14 let sinks = <T> {};

15 let result: {sources: T, sinks: T};

16

17 components.forEach(component => {

18 result = component(nextSources);

19 nextSources = result.sources as T;

20 componentSinks = result.sinks;

21

22 // For any key of the nextSinks that is in the sinks, merge them.

23 // Otherwise, add the new `key: stream` to sinks

24 for (let sink in componentSinks) {

25 if (sinks.hasOwnProperty(sink)) {

26 sinks[sink] = sinks[sink].merge(componentSinks[sink]);

27 } else {

28 sinks[sink] = componentSinks[sink];

29 }

30 }

31 });

32

33 return {sources: nextSources, sinks};

34 };

Figure 49. Compose function
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Observable merge operation

Sink output

Source output

Figure 50. rxdn Compose function

6.4 Future Work

The two most lucrative areas for future work on this framework are in performance

and distribution. The current performance of the framework and areas where it

can be improved are covered together with the library performance in Chapter VII.

Controller distribution is a complex topic and current major area of research in the

SDN community [17, 75, 76].

This framework provides an interesting vehicle to begin to study controller distribu-

tion. As described in Section 6.3, the framework promotes a clear delineation between

logic and side-effects by extracting state management from components and moving

them into drivers. This separation is inherited from functional programming, and is a

solid foundation for distribution, as one of the most difficult hurdles in distributed

systems is state management and synchronization.
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As described in Section 6.3.2, the simple state driver provided could easily be

extended to include a client connection to a database, providing a common memory

for distributed instances of the controller. Additionally, many document databases

have built-in means for distribution, which would allow another independent variable

for experimentation (i.e., multiple distributed controllers with one backing database as

memory versus multiple distributed controllers with a distributed backing database).
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VII. Controller Performance Testing

7.1 Introduction

Many of the qualities of an OpenFlow controller are subjective. For example, the

ease of development of network applications, the simplicity of deployment, and code

maintainability are all subject to the practitioner’s exposure to various programming

languages and paradigms and experience in network operations. However, a controller’s

ability to rapidly and reliability answer requests as the number of switches and network

load increases is distinctly quantifiable.

This chapter explains the means by which OpenFlow controllers are traditionally

measured in their performance, cover the testing methodology used to compare the

products in this document to existing controllers, and finally give the results of the

measurements.

7.2 Related work

There have been a number of notable controller performance testing tools and

papers released since 2012. This section briefly describes these and their design.

The most widely-used controller benchmarking tool is Cbench [22]. Cbench emu-

lates a configurable number of switches and hosts, the latter of which are represented

as unique MAC addresses. For each switch, it makes a connection to the controller

and starts sending PacketIn messages. In latency mode, Cbench waits between each

PacketIn for the controller to respond with a PacketOut or FlowMod, and calculates the

number of responses per second it receives from the controller. In throughput mode,

Cbench sends as many PacketIn messages as will fit in its outgoing buffers and measures

the total number of responses received to calculate the overall responses per second.

By default, the program runs 16 times with 16 switch connections to the controller,
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discarding the first run as a warmup, but these parameters are all configurable via

command line switches. Despite supporting only version 1.0 of the OpenFlow protocol,

Cbench is widely used in the community as it is simple and effective. Cbench has also

inspired several other controller benchmarking designs [77–79]. The Cbench algorithm

is given in Algorithm 3.

Algorithm 3 Cbench benchmarking tool

-s command line switch becomes s, number of switches; default 16
-l command line switch becomes l, number of test loops; default 16
-m command line switch becomes m, duration of each test in ms; default 1000
Create s OpenFlow sessions to the controller
if Latency mode (default) then

for each session of s sessions, each test of l tests, over m ms per test do
Send PacketIn message
Wait for matching FlowMod or PacketOut message
Calculate number of messages received per second

end for
else if Throughput mode (-t) then

for each session of s sessions, each test of l tests, over m ms per test do
while Buffer not full do

Queue PacketIn messages
Count number of FlowMod or PacketOut messages received

end while
end for

end if
Calculate overall min/max/avg/stddev responses per second

OFCProbe [79] is a modular approach to controller benchmarking that was inspired

by Cbench but written in Java. It is a redesign from the same author’s previous work

in benchmarking, OFCBenchmark [77]. The authors claim their updated tool offers a

much higher degree of detail of results when compared to Cbench, being able to discern

performance characteristics of individual virtual switches, making more insightful

analysis possible. The separation of concerns into traffic generation, configuration,

and statistics gathering makes the tool both more cross-platform and easier to extend

than Cbench, which is written monolithically and requires the Linux kernel API.
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The authors of hcprobe [78] adopt Cbench for performance testing and extend

it into a larger framework which adds “functional/regression” and security tests.

They argue that the criteria for selection of a controller extends beyond performance,

and attempt to use their extensions to Cbench to quantify these additional criteria.

Interestingly, they conclude that none of the controllers tested are truly ready for use

in “enterprise”, which they define as any environment where security and reliability

are the highest priorities.

More recently, papers including [80, 81] have utilized plain Cbench, unmodified

since its 2012 release, to perform and report measurements of modern versions of

popular controllers. The authors of these 2015 and 2016 papers generally concede that

raw performance such as that measured by Cbench is by no means the only criteria

for selecting a controller. They relegate Python-based controllers to the role of small,

prototype networks due to their single-threaded nature and inability to scale. They

conclude that the best performance is achieved by controllers written in C, C++, or

Java.

7.3 Methodology

The problems of results gathering, test target orchestration, and Cbench parameter

automation can be solved with a combination of scripting and containerization, and

that is the main contribution of this methodology, detailed in Section 7.3.5.

The logical test configuration is depicted in Figure 51. This is a logical, not

physical diagram, as all testing occurred internal to a single computer. The figure

shows the test control program, Cbench runner, which creates and runs containers to

perform testing. One container runs modified Cbench while the other runs the selected

controller. The two containers are connected via virtual network. Results from the
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Cbench container (from standard output, or stdout) are collected by the Cbench

runner and appended to a results file in comma-separated values (CSV) format.

Cbench

Controller
Cbench
runner

start/stop

stdout

start/stop

results.csv
Figure 51. Test setup for Cbench runner controlling containers and collecting results

Each portion of Figure 51, including the software, hardware, parameters, and test

suite are described in the rest of this section, with results and analysis following in

the next section.

7.3.1 Cbench shortcommings.

There have been many published uses of Cbench and similar tools, with Cbench

being the common standard for performance measurement. However, Cbench has a

number of shortcomings, particularly in running multiple tests and gathering results.

The program creates no files; connection and error-related messages are printed

to standard error while performance related messages and statistics are printed to

standard output. Example output of Cbench in action is given in Figure 52. Lines

11–26 show the results of each individual test run. Each of these lines start with

a timestamp, followed by the number of simulated switches in that run. The four

numbers in the middle represent the number of responses received for each of those

four switches for the 1-second test interval. The rightmost number is a sum of these

four numbers expressed in milliseconds. (Note that there is a small amount of error

due to floating point representation; in the first line, 1332× 4/1000 = 5.328 ms.) Line
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27 is a summary statement of lines 11–26. While the results are clear for a single

test, the program’s lack of output options make running many tests across different

controllers very labor-intensive.

1 cbench: controller benchmarking tool

2 running in mode 'latency'

3 connecting to controller at ryu:6633

4 faking 4 switches offset 1 :: 16 tests each; 1000 ms per test

5 with 100000 unique source MACs per switch

6 learning destination mac addresses before the test

7 starting test with 0 ms delay after features_reply

8 ignoring first 1 "warmup" and last 0 "cooldown" loops

9 connection delay of 0ms per 1 switch(es)

10 debugging info is off

11 18:22:05.564 4 switches: flows/sec: 1332 1332 1332 1332 total = 5.327995 per ms

12 18:22:06.666 4 switches: flows/sec: 1295 1294 1294 1294 total = 5.176995 per ms

13 18:22:07.770 4 switches: flows/sec: 1302 1302 1302 1302 total = 5.207995 per ms

14 18:22:08.876 4 switches: flows/sec: 1292 1292 1292 1291 total = 5.166969 per ms

15 18:22:09.977 4 switches: flows/sec: 1308 1307 1308 1308 total = 5.230995 per ms

16 18:22:11.079 4 switches: flows/sec: 1283 1282 1283 1283 total = 5.130995 per ms

17 18:22:12.182 4 switches: flows/sec: 1296 1295 1295 1296 total = 5.181995 per ms

18 18:22:13.283 4 switches: flows/sec: 1194 1193 1194 1193 total = 4.773995 per ms

19 18:22:14.384 4 switches: flows/sec: 1230 1230 1230 1230 total = 4.919995 per ms

20 18:22:15.485 4 switches: flows/sec: 800 794 794 796 total = 3.183997 per ms

21 18:22:16.588 4 switches: flows/sec: 1115 1116 1115 1115 total = 4.460960 per ms

22 18:22:17.689 4 switches: flows/sec: 1011 1010 1011 1010 total = 4.041996 per ms

23 18:22:18.789 4 switches: flows/sec: 670 669 669 668 total = 2.675997 per ms

24 18:22:19.890 4 switches: flows/sec: 1025 1025 1025 1025 total = 4.099996 per ms

25 18:22:20.990 4 switches: flows/sec: 1153 1152 1151 1152 total = 4.607995 per ms

26 18:22:22.093 4 switches: flows/sec: 611 607 610 608 total = 2.434566 per ms

27 RESULT: 4 switches 15 tests min/max/avg/stdev = 2434.57/5230.99/4419.70/918.86 responses/s

Figure 52. Example of unmodified Cbench output running against Ryu

Another problem with using Cbench to run multiple tests is the lack of test subject

isolation across multiple tests. In other words, simple test scripting with Cbench along

the lines of “run a test for each of the following parameters” is inadequate, because

the same instance of a controller is running for each test, and state from a previous

test may significantly alter the results of the current and future tests. To achieve

uncontaminated results and a truer picture of performance, each controller must be

restarted before each test. Cbench provides no means to do this, and it is unclear

whether any of the published results papers took such considerations into account.
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7.3.2 Software.

7.3.2.1 Cbench Modification.

The benchmark program in each case was Cbench, as it is the most widely-used

and accepted tool for controller performance measurements. Cbench was modified

only in its output (printf statements) such that its standard output could be easily

concatenated into a CSV file. This allows the results to easily be read and plotted

by programs like R and Excel. An example of unmodified Cbench output is given in

Figure 52, and modified CSV output in Figure 53. In the latter, all text that is not

CSV-style results is part of standard error, so it is not stored by the test suite. The

CSV columns are, in order, the number of fake switches (parameter -s), a boolean

value indicating whether this result is a warmup loop, and the remaining columns are

the number of responses received for this iteration for each fake switch, in order. The

changes to Cbench are included in patch format in Appendix D.

7.3.2.2 Controllers Tested.

A variety of controllers which are written for different languages and platforms

were tested. They are listed in Table 4 along with their type and the version tested.

Table 4. Tested OpenFlow controllers

Controller Version Language/Platform

rxdn 0.1.6 TypeScript 2.1, Node.js 7.3.0
node-openflow 0.3.9 TypeScript 2.1, Node.js 7.3.0
Libfluid 0.1.0 C++ and libevent 2.0
Ryu 4.9 Python 2.7.12
ONOS 1.9.0 Java 1.8.0
NOX 0.9.2 C++ with libboost
Trema 0.10.1 Ruby 2.3.3
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1 cbench: controller benchmarking tool

2 running in mode 'latency'

3 connecting to controller at ecstatic_jepsen:6633

4 faking 4 switches offset 1 :: 16 tests each; 1000 ms per test

5 with 100000 unique source MACs per switch

6 learning destination mac addresses before the test

7 starting test with 0 ms delay after features_reply

8 ignoring first 1 "warmup" and last 0 "cooldown" loops

9 connection delay of 0ms per 1 switch(es)

10 debugging info is off

11 4, 1, 1346, 1346, 1346, 1346

12 4, 0, 1272, 1271, 1271, 1272

13 4, 0, 1200, 1199, 1198, 1198

14 4, 0, 1301, 1301, 1300, 1300

15 4, 0, 1275, 1274, 1274, 1274

16 4, 0, 1299, 1299, 1298, 1299

17 4, 0, 1277, 1277, 1276, 1276

18 4, 0, 1301, 1301, 1301, 1301

19 4, 0, 1320, 1319, 1319, 1320

20 4, 0, 1315, 1316, 1316, 1315

21 4, 0, 1287, 1287, 1286, 1286

22 4, 0, 1317, 1316, 1317, 1315

23 4, 0, 1312, 1312, 1312, 1312

24 4, 0, 1309, 1309, 1309, 1308

25 4, 0, 1293, 1292, 1293, 1293

26 4, 0, 1302, 1302, 1302, 1302

Figure 53. Example of modified Cbench output (CSV)
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7.3.2.3 Test Order.

The order of the tests was latency mode first, followed by throughput, with

controllers tested in the order shown in Table 4 by increasing numbers of switches.

7.3.3 Test System.

The tests were run on a four-core, 2.6 GHz AMD Opteron 4130 CPU running

Linux kernel 4.8.13 with 16 GB RAM. The tests wrote result data asynchronously

and outside the execution of each test, making the specifications of the hard disk array

irrelevant. The system was a headless, bare-minimum installation of Arch Linux, and

was not running any active processes at the time of the test other than the test suite

itself and its supporting processes. Similarly, the processes under test as well as the

Cbench process itself were run as containers on the same system, making physical

network interface card (NIC) specifications irrelevant.

7.3.4 Test Workload Parameters.

Cbench was run in each of its test modes (latency and throughput) with the

number of fake switches increasing according to 2n for 0 ≤ n < 8. The rest of the

Cbench parameters were left at their default values.

Each of the controllers was tested using its included application for benchmarking.

These applications are included in virtually every controller package, and are usually

a simplified version of a switch or hub with logging and other unnecessary functions

disabled. As Cbench simply counts replies and does not distinguish between PacketOut

and FlowMod messages, some of the benchmarking applications would not be suitable

for a real network as they take shortcuts, such as failing to include proper ports

or MAC addresses in replies. For the purpose of finding a maximum performance

measurement, this approach is simple and effective, but it is important to note that a
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network application could not perform better than this measurement without changes

to the controller itself.

The number of replications for each test was calculated using the pwr package

for the R programming language [82]. The package calculates parameters related to

statistical power for a variety of tests based on guidance given in [83]. As the object

of statistical analysis for the controllers is to compare their means of performance,

analysis of variance (ANOVA) is an appropriate statistical tool to use. The function

pwr.anova.test is used to calculate one missing parameter out of the set; in this case,

the parameter being solved for is the number of replications, n. The number of groups,

k, is equal to the number of controllers tested. The sig.level and power parameters

are equal to α (the Type I error rate, or probability of detecting an effect that does

not exist) and 1 − β (the power, which is the inverse of the Type II error rate, or

probability of failing to detect an effect that does exist), respectively. Typical values

for these parameters are α = 0.05 and 1− β = 0.8, and there was not deemed to be

a reason to deviate from these. The effect size can be calculated as the ratio of the

standard deviation of the k means to the standard deviation of the k groups. In this

case, these values were not known before hand, so conventional effect size to detect a

“medium” effect as defined by [83] was used. This value is also given by a function of

the pwr package. The output of both is shown in Figure 54. The ceiling of the value

for n is the minimum number of replications for each test; to add a slight margin, the

value n = 36 was chosen.

A summary of the test factors is listed in Table 5.

Table 5. Test factors

Factor Values

switches 1, 2, 4, 8, 16, 32, 64, 128
mode latency, throughput
controllers rxdn, node-openflow, Libfluid, Ryu, ONOS, NOX, Trema
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1 > library(pwr)

2 > cohen.ES(test = "anov", size = "medium")

3

4 Conventional effect size from Cohen (1982)

5

6 test = anov

7 size = medium

8 effect.size = 0.25

9

10 > pwr.anova.test(k = 7, f = 0.25, sig.level = 0.05, power = 0.8)

11

12 Balanced one-way analysis of variance power calculation

13

14 k = 7

15 n = 32.05196

16 f = 0.25

17 sig.level = 0.05

18 power = 0.8

19

20 NOTE: n is number in each group

Figure 54. Calculation of effect size and number of replications via pwr in the R
programming language
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A System Under Test (SUT) diagram is shown in Figure 55. Varied factors

are shown as workload parameters on the left, with constant system parameters on

top. The constant controller software parameters are listed in Table 4, with system

software and hardware parameters described in Section 7.3.3. The output of the SUT

are the metrics, which are each written as a single line into a results file, including

which controller was tested, with which parameters, and the response counts for each

simulated switch. (Warmup results are also written but are discarded in analysis).

SUTWorkload Parameters

System Parameters

Metrics
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Cbench runner

controller

switches
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Figure 55. System under test diagram

7.3.5 Test Suite.

The test suite is a single Git repository called “Cbench runner” which contains all

the components needed to install, build, and run tests across seven controllers, with a

simple template to easily add others. The only prerequisites are Git [84], Node.js [51],

and the Docker software containerization platform [85], all of which are freely available

and easy to install on Linux, Mac, and Windows, allowing anyone to quickly and

easily perform controller performance tests on virtually any platform.
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The test suite contains a directory of Docker build files (called Dockerfiles): one

for the customized, CSV-printing version of Cbench, and one for each of the seven

controllers included. These consist of a series of build instructions which the Docker

daemon uses to download the parent container image and install the controller upon.

The Dockerfile for Libfluid is shown as an example in Figure 56.

1 FROM buildpack-deps:precise

2

3 RUN apt-get update

4 RUN apt-get install -y --no-install-recommends libevent-dev libssl-dev

5

6 RUN git clone https://github.com/OpenNetworkingFoundation/libfluid.git

7 WORKDIR libfluid

8 RUN ./bootstrap.sh

9 WORKDIR libfluid_base

10 RUN ./configure --prefix=/usr

11 RUN make

12 RUN make install

13 WORKDIR ../libfluid_msg

14 RUN ./configure --prefix=/usr

15 RUN make

16 RUN make install

17 WORKDIR ../examples/controller

18 RUN make all

19

20 # Suitable options here are:

21 # - msg_controller

22 # - raw_controller

23 # - secure_controller

24 ENTRYPOINT ["./msg_controller"]

25

26 # Suitable options here are:

27 # - l2

28 # - cbench

29 CMD ["cbench"]

Figure 56. Dockerfile for a Libfluid image for Cbench testing

The test suite also contains a Node.js program written in TypeScript which runs

each test for each of the desired numbers of fake switches and each of the controllers.
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The program handles restarting the controller between each test to provide isolation,

prepending the controller name and test mode (latency or throughput), and writes all

the results to a single CSV file. The algorithm for the program is given in Algorithm 4,

and its usage in Figure 57. The full source code of the program is given in Appendix C.

Algorithm 4 Test suite runner

Open results file for appending
for each mode of throughput, latency do

for each controller to be tested do
for each of the numbers of fake switches given in -s do

Start controller container
Start Cbench container, linked to controller
Wait for Cbench exit
Stop and remove controller container
Split Cbench stdout by line, prepend controller name, test mode
Write results to file

end for
end for

end for
Close results file

1 Usage: node dist/start.js [options]

2

3 Options:

4 -h, --help Show help [boolean]

5 -a, --append Append results [boolean]

6 -f, --file File for results [default: "results.csv"]

7 -j, --just Specify a single test to run [number]

8 -l, --loops Number of loops [number] [default: 37]

9 -M, --mac-addresses Unique source MAC addresses [number] [default: 100000]

10 -m, --ms-per-test Test length in ms [number] [default: 1000]

11 -s, --switches Numbers of switches

12 [number] [default: [1,2,4,8,16,32,64,128]]

13 -t, --targets YAML test specification [default: "targets.yaml"]

Figure 57. Test suite runner usage
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7.4 Results and Analysis

7.4.1 Boxplots.

In order to visualize how the increasing number of simulated switches impacts each

controller, the number of switch responses per test was summed across all switches and

the results graphed. Cbench’s throughput and latency modes are discussed separately.

7.4.1.1 Throughput Mode.

As discussed, Cbench in throughput mode sends as many PacketIn messages as

will fit in its outgoing buffers and measures the total number of responses received

to calculate the overall responses per second. The result is an indication of how well

a controller responds when overloaded. Figure 58 shows boxplots for each of the

controllers where the total number of responses for each run is plotted on the y axis

against the number of simulated switches on the x axis.

An immediate observation is the dominance of Libfluid over the other controllers

tested. After Libfluid, it appears that ONOS and NOX perform well, and it is

difficult to make out differences beyond that. The high performance of Libfluid can

be attributed to the fact that it can be considered more of a framework upon which

to build a controller than a fully-fledged controller, and that it is written in C++, so

there is very little overhead. Furthermore, its use of libevent (similar to libuv used by

Node.js) may contribute to its high performance.

A problem with this view is that responses across switches are cumulative so the

controller’s ability to scale with the number of switches artificially inflates its score on

the plot. To gain further insight, a new column of data is created from the quotient

of the number of responses by the number of switches, the result of which is shown

in Figure 59. This plot illustrates that there is a decrease in performance to each
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Figure 58. Total number of responses by controller, switches for Cbench throughput
mode

individual switch as more switches are added, however the performance of the Libfluid

controller still dwarfs the others.

Removing Libfluid and NOX from Figure 59 yields Figure 60. This shows ONOS

as the best performer of the subset, and an unexpected per-switch performance

improvement at four switches over one and two. Next in this set is node-openflow,

which has visibly higher variability at higher numbers of switches.

The three slower controllers are not distinguishable, so it is worth comparing just

those three in Figure 61. This figure shows Trema clearly at the bottom, with rxdn

and Ryu at similar performance. However, Ryu has visibly lower variability in its

performance over rxdn.

Overall, these boxplots demonstrate that for the throughput mode of Cbench,

Libfluid is clearly the top performer, followed by NOX, then ONOS, then node-openflow.

Ryu appears to narrowly beat rxdn, and at the bottom is Trema.
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Figure 59. Responses/Switches by controller, switches for Cbench throughput mode
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Figure 60. Responses/Switches by controller, switches for Cbench throughput mode,
sans Libfluid and NOX
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Figure 61. Responses/Switches by controller, switches for Cbench throughput mode,
slow 3

7.4.1.2 Latency Mode.

Again, Cbench in latency mode waits between each PacketIn for the controller

to respond with a PacketOut or FlowMod, and calculates the number of responses per

second it receives from the controller. As opposed to throughput mode, the result

of this test is an indication of how quickly the controller responds when it is not

overloaded. Figure 62 shows boxplots for each of the controllers where the total

number of responses for each run is plotted on the y axis against the number of

simulated switches on the x axis.

Again, the total responses is divided by the number of switches in order to show

how the controller is able to serve each switch as the total number of switches increases.

This is shown for all controllers in Figure 63.

Figure 63 gives an indication that Libfluid again sets the high-water mark, but it

is difficult to determine ranking within the other high three (node-openflow, ONOS,
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Figure 62. Total number of responses by controller, switches for Cbench latency mode
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Figure 63. Responses/Switches by controller, switches for Cbench latency mode
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NOX) and low three (rxdn, Ryu, Trema), so these are shown separately in Figures 64

and 65, respectively.
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Figure 64. Responses/Switches by controller, switches for Cbench latency mode

Figure 64 shows a very high degree of variance for node-openflow relative to the

other two controllers in this range. It also shows an unexpectedly low number of

responses for a single switch compared to when more switches are simulated. While the

median at more than 16 switches is much higher for node-openflow, the interquartile

range is extremely broad at these values, indicating a very inconsistent level of

performance from request to request.

Figure 65 shows rxdn with a performance profile very similar to that of Ryu, but

visibly higher. Trema is again at the bottom.

More resolution is available on boxplots of individual controller performance. These

are available for each controller and Cbench mode in Appendix B.
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Figure 65. Responses/Switches by controller, switches for Cbench latency mode

7.4.2 Statistical Analysis.

The tests were run with a varying number of switches, as shown above. However

for statistical analysis, a single, representative number of switches was chosen, which

is the Cbench default, 16. This leaves the controllers as the single factor, and an

appropriate tool for such comparison of means is a one-way, balanced ANOVA. All

controllers at 16 switches are shown in Figures 66 and 67. The summary of the data

for latency mode is given in Table 6 and for throughput in Table 7.

Before using a balanced, one-way ANOVA, the assumptions of the test should be

checked. These include the following:

1. the same number of replications between groups (balanced), and

2. like variance between groups (homoscedasticity).
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Figure 66. Responses by controller at 16 switches, latency mode

Table 6. Controller responses for 16 switches in latency mode

Controller Mean Median Std. dev. Replications

rxdn 6543.22222 6562.0 77.05920 36
node-openflow 74455.08333 67802.5 20076.46781 36
libfluid 83798.05556 83638.5 745.45039 36
ryu 4730.58333 4707.5 64.20787 36
onos 69365.30556 69394.5 432.76822 36
trema 61.16667 61.0 2.00713 36
nox 37779.19444 37954.5 890.92706 36
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Figure 67. Responses by controller at 16 switches, throughput mode

Table 7. Controller responses for 16 switches in throughput mode

Controller Mean Median Std. dev. Replications

rxdn 3274.94444 3364.5 695.683300 36
node-openflow 57823.08333 57858.5 8303.721181 36
libfluid 1300059.72222 1304894.0 12907.629707 36
ryu 7052.22222 7043.0 108.091525 36
onos 151178.66667 151932.0 3452.642524 36
trema 63.72222 63.5 2.679138 36
nox 139250.05556 140647.0 6481.411870 36
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The test is a balanced test because the number of replications across groups (controllers)

is the same (as calculated in Section 7.3.4, n = 36). To test the second assumption,

Levene’s test can be used [37]. If Levene’s test is significant (i.e., p ≤ 0.05) then the

assumption of homogeneity of variances is violated. For both latency and throughput

results the variances were significantly different, with F (6, 245) = 60.545, p � 0.01

for latency and F (6, 245) = 16.926, p � 0.01 for throughput. As a result, robust

(nonparametric) methods must be used.

Welch’s F is a robust test of multiple means that adjusts for heteroscedasticity. If

the test is significant (p ≤ 0.05), then it can be concluded that means differ significantly

between factors [37]. The test was run for the latency mode test where the number

of switches was 16, and the result was significant F (6, 93.384) = 314540, p� 0.001.

While this result indicates significant differences between the controllers, it does not

give insight into which controllers differ.

While it was expected that means would differ between controllers, it was not

known which would outperform others. Therefore, specific hypotheses were not made.

In such instances, post hoc tests can be used to conservatively make conclusions on

collected data. Wilcox describes a robust post hoc test for comparison of multiple

means that is coded in the R programming environment package WRS2.

The results for 16 switches, latency mode are given in Figure 68 and for throughput

mode in Figure 69. In the function’s output, the p-value is not adjusted to control for

familywise error (FWE), therefore significance is instead represented by a confidence

interval that does not include zero. With this criteria, all but two of the latency mode

comparisons are significant: node-openflow vs. libfluid and node-openflow vs. onos.

For throughput mode, all comparisons are significant. These distinctions help clarify

interpretations of the boxplots above; for latency, it can be seen that the node-openflow

interquartile range encompasses the entire range of both libfluid and onos, making the
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comparison non-significant. For all others, including throughput, the variance of each

is small enough that the differences are significant.

1 > library(WRS2)

2 > lincon(responses ~ controller, latency)

3

4 Call:

5 lincon(formula = responses ~ controller, data = latency)

6

7 psihat ci.lower ci.upper p.value

8 rxdn vs. node-openflow -61919.773 -76525.203 -47314.343 0.00000

9 rxdn vs. libfluid -71228.682 -71650.798 -70806.566 0.00000

10 rxdn vs. ryu 1720.636 1679.730 1761.543 0.00000

11 rxdn vs. onos -57674.909 -57870.465 -57479.353 0.00000

12 rxdn vs. nox 6095.773 6088.569 6102.976 0.00000

13 rxdn vs. trema -29426.773 -29627.017 -29226.529 0.00000

14 node-openflow vs. libfluid -9308.909 -23917.569 5299.751 0.04194

15 node-openflow vs. ryu 63640.409 49034.950 78245.868 0.00000

16 node-openflow vs. onos 4244.864 -10361.258 18850.985 0.33436

17 node-openflow vs. nox 68015.545 53410.116 82620.975 0.00000

18 node-openflow vs. trema 32493.000 17886.845 47099.155 0.00000

19 libfluid vs. ryu 72949.318 72526.194 73372.442 0.00000

20 libfluid vs. onos 13553.773 13103.237 14004.309 0.00000

21 libfluid vs. nox 77324.455 76902.370 77746.540 0.00000

22 libfluid vs. trema 41801.909 41349.867 42253.951 0.00000

23 ryu vs. onos -59395.545 -59593.337 -59197.754 0.00000

24 ryu vs. nox 4375.136 4334.563 4415.709 0.00000

25 ryu vs. trema -31147.409 -31349.833 -30944.985 0.00000

26 onos vs. nox 63770.682 63575.194 63966.170 0.00000

27 onos vs. trema 28248.136 27983.851 28512.421 0.00000

28 nox vs. trema -35522.545 -35722.723 -35322.368 0.00000

Figure 68. Wilcox robust comparison of multiple means applied to latency mode tests
at 16 switches

A detailed walkthrough of all analysis done in the R programming language is

included in Appendix E.
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1 > lincon(responses ~ controller, throughput16)

2

3 Call:

4 lincon(formula = responses ~ controller, data = throughput16)

5

6 psihat ci.lower ci.upper p.value

7 rxdn vs. node-openflow -53987.545 -58515.752 -49459.339 0

8 rxdn vs. libfluid -1300140.455 -1306513.115 -1293767.794 0

9 rxdn vs. ryu -3636.682 -3991.006 -3282.358 0

10 rxdn vs. onos -148339.909 -150260.403 -146419.416 0

11 rxdn vs. nox 3342.136 2987.812 3696.461 0

12 rxdn vs. trema -136379.318 -138713.567 -134045.069 0

13 node-openflow vs. libfluid -1246152.909 -1253575.547 -1238730.271 0

14 node-openflow vs. ryu 50350.864 45830.047 54871.681 0

15 node-openflow vs. onos -94352.364 -99120.454 -89584.273 0

16 node-openflow vs. nox 57329.682 52808.865 61850.499 0

17 node-openflow vs. trema -82391.773 -87290.674 -77492.871 0

18 libfluid vs. ryu 1296503.773 1290136.345 1302871.201 0

19 libfluid vs. onos 1151800.545 1145269.770 1158331.321 0

20 libfluid vs. nox 1303482.591 1297115.163 1309850.019 0

21 libfluid vs. trema 1163761.136 1157139.955 1170382.318 0

22 ryu vs. onos -144703.227 -146605.761 -142800.694 0

23 ryu vs. nox 6978.818 6976.978 6980.659 0

24 ryu vs. trema -132742.636 -135062.282 -130422.991 0

25 onos vs. nox 151682.045 149779.512 153584.579 0

26 onos vs. trema 11960.591 9121.125 14800.057 0

27 nox vs. trema -139721.455 -142041.100 -137401.809 0

Figure 69. Wilcox robust comparison of multiple means applied to throughput mode
tests at 16 switches
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7.5 Summary and Future work

Leaving out node-openflow and rxdn, the highest-performing controllers (Libfluid,

ONOS, NOX) are those compiled (C++) or JIT-compiled (Java) while the lowest-

performing (Trema, Ryu) are those interpreted (Ruby, Python). (The list of tested

controllers and their corresponding languages and platforms are shown in Table 4).

The results show that node-openflow, while approaching the performance of com-

piled controllers, also exhibits much more variance in its performance. This may be a

characteristic of the Node.js platform (e.g., due to its garbage collector or the quality

of its code) or the quality of the node-openflow library itself. While node-openflow

was heavily modified to exhibit correct behavior and high performance, newly released

features for performance profiling of Node.js applications may help focus on areas of

the code that would benefit from further optimization. Updating the code base may

also increase performance, as newly released versions of Node.js purportedly contain

large improvements to the performance of the read and write methods of the Buffer

class, which node-openflow (and therefore also rxdn) make extensive use of.

Additionally, rxdn shows a large potential for performance improvement. While

it exceeds Ryu’s performance by at least 33% with statistical significance in latency

mode with 16 simulated switches, it is slower in throughput mode and slower in

either mode than the library node-openflow or professional controllers (e.g., Libfluid,

ONOS, and NOX). Since rxdn is built directly on the node-openflow library, that

library’s performance should be considered the upper-bound of rxdn’s possible future

performance. The primary difference in implementation between the two is that the

library uses Node.js transform streams while the framework uses RxJS Observables.

While some other implementations of Reactive Extensions do contain methods for

backpressure handling (e.g., RxJava), RxJS currently does not. This has been identified
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as a future area for improvement in a developer’s discussion in the RxJS source code

repository [86, 87].

Besides the library and framework, the test suite itself could be extended to support

distributed testing, where the controller resides on a separate physical computer from

the Cbench program that is testing it. This would improve the realism of the data

and potentially improve its accuracy, as the benchmarking program and controller

would no longer be competing for the same system resources.
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VIII. Conclusions

8.1 The State of SDN

Despite promises of revolutionary networks sweeping the industry, SDN develop-

ment has largely plateaued. Network hardware is very expensive, so practitioners

are resistant to upgrades unless they can see an objective gain for the money. In

most cases, it is not possible to estimate the gains of SDN without committing to all

new hardware. The result is that SDN is largely constrained to the laboratory and

specialized data center networks.

Once hardware is made available and software installed, programming a network

to match with operational objectives and policies is difficult, and in many cases,

uncharted territory. While some proprietary solutions exist, these are not easily

modified. Open-source solutions lack basic functionality or the performance that

would be required for an enterprise network environment.

Barriers across hardware and software have slowed network innovation.

8.2 Research Conclusions

The results and final deductions of this work are broken across the three domains:

1. Hardware: From designing and measuring the performance of the shim, it was

found that such a device is feasible, in that it will properly forward traffic

according to SDN policy for at least one host at a time.

2. Controller: It was demonstrated that a controller designed with an event loop

in an interpreted language can perform at or near the level of a traditional

multithreaded, compiled controller.
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3. Application: A new framework for creating modular network control applications

was developed. The framework can be used to combine functionality of different

applications in a way that is intuitive and with reasonable performance.

8.3 Research Contributions

The following contributions were made:

• Hardware: This research has shown that it is possible to create inexpensive,

incremental steps to allow older networks to adopt newer SDN protocols.

• Controller: This research has contributed a working OpenFlow library that can

be extended and used for research and experimentation. Its high performance

makes it suitable for simulations and experiments involving hundreds of switches

and thousands of hosts.

• Application: This research has contributed a new framework for network appli-

cation development that shows it is possible to easily to create modular control

applications.

8.4 Limitations of this Research

The limitations are broken down by chapter:

• Shim (Chapter III): The shim created does not implement any of the OpenFlow

protocol, but only makes the switch behave as if it were preconfigured by a

controller to forward traffic. It proves the concept but does not actually provide

the functionality. Adding this functionality, which is called an OpenFlow agent,

would require a significant amount of effort.
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• Schema (Chapter IV): The schema only implements OpenFlow versions 1.0 and

1.3 (the latest publicly-available version is 1.5). Furthermore, not every message

is completely implemented.

• Library (Chapter V): The library also only implements OpenFlow versions

1.0 and 1.3. It is written for Node.js, which is a relatively immature runtime

undergoing significant changes from release to release. Also, JavaScript is a

language with serious historical baggage, and even when fortified with TypeScript,

takes some time to master its idiosyncracies.

• Framework (Chapter VI): The framework also only implements OpenFlow

versions 1.0 and 1.3. It relies on Rxjs, which is under heavy development and

has not yet been optimized for performance.

• Benchmark (Chapter VII): The benchmarking program, Cbench runner, is

highly dependent upon Cbench, which only benchmarks OpenFlow version 1.0.

Furthermore, there is not currently a way to have the test run on different

computers (e.g., with the controller on one machine and Cbench on another).

This reduces the realism of the measurement, as the CPU, RAM, etc. are

constrained resources between the benchmarking program and the program

being measured. Also, the Docker container platform is constantly changing,

with API changes at every minor version. This adds a burden of updating the

test program anytime the underlying Docker installation is updated.

8.5 Recommendations for Future Work

Each of the contributions, as stated, could be extended or reworked to provide

new conclusions and insights.
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• Shim

– The shim could be extended to support 10 Gbps and use this type port for

a trunk in order to lessen the potential bottleneck of traffic.

– The shim could similarly be extended to implement handoff between output

ports on the shim to improve contention.

– An OpenFlow agent could be implemented to make it a fully-functional

shim, able to connect to a controller and make the traditional switch appear

as an OpenFlow switch.

• OpenFlow Schema

– The schema could be extended to support more and newer versions of the

OpenFlow protocol.

– It may be possible to generalize the schema in such a way that it includes

encoding and decoding information directly in the schema. This would

allow a library to implement new versions just by referencing the updated

schema.

• node-openflow Library

– Like the schema, the node-openflow library could be extended to more

OpenFlow versions.

– The library could be refactored to reduce redundancy in commonly-used

structures. This would also help simplify the addition of new protocols.

– If the schema is updated to include encoding and decoding information,

the library could be updated to utilize this to be able to encode and decode

messages in a generalized way, greatly reducing the code size and potential

for errors.
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• rxdn Framework

– The framework could be analyzed for further performance optimizations

that would put it on the level of the library. This may require changing the

dependency on Rxjs to another reactive programming library, or making

recommendations for changes to the Rxjs project.

– As the framework exists, it provides an interesting platform to experiment

with controller distribution. It already separates logic and state in such a

way that a distributed design is possible.

• Cbench runner test suite

– Beyond highlighting areas for improvement of the library and framework,

the test suite itself could be modified to allow for testing across separate

physical computers, i.e., to have the Cbench and controller on different

systems.

8.6 Concluding Thoughts

The SDN architecture holds great promise for fueling computer network innova-

tion for years to come, however there are still barriers to its use even in research

environments. This work has tried to target and mitigate a few of the major hurdles

facing adoption, use, and research in SDN. Lowering the barrier of entry to SDN

for students, researchers, and practitioners can allow for rapid experimentation and

development of new network designs that may be faster, more secure, and more easily

maintainable than the systems we have today.
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Appendix A. Shim Throughput and Latency Observations

Table 8. Throughput Observations (Mbps)

# Switch Switch & Shim

1 957 959
2 944 923
3 946 933
4 939 944
5 943 933
6 947 933
7 939 933
8 938 933
9 940 933
10 947 933
11 957 959
12 946 933
13 944 933
14 941 933
15 941 933
16 940 944
17 939 933
18 940 933
19 944 933
20 942 923
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Table 9. Latency Observations (ns)

# Switch Switch & Shim

1 3952 7592
2 3880 7512
3 3960 7536
4 3888 7552
5 3840 7600
6 3944 7528
7 3864 7552
8 3872 7528
9 3848 7512
10 3856 7592
11 3920 7624
12 3848 7576
13 3952 7520
14 3904 7584
15 3856 7592
16 3936 7528
17 3872 7552
18 3864 7560
19 3896 7584
20 3856 7616
21 3944 7608
22 3872 7616
23 3952 7608
24 3912 7576
25 3968 7528
26 3936 7640
27 3856 7528
28 3880 7632
29 3936 7536
30 3872 7560
31 3928 7544
32 3840 7552
33 3856 7560
34 3880 7576
35 3840 7632
36 3896 7576
37 3872 7592
38 3872 7536
39 3944 7528
40 3920 7536
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Appendix B. Controller Performance Analysis Plots

Figures 70 through 83 are individual boxplots for each controller and Cbench mode

(latency and throughput). These are discussed in aggregate in Chapter VII.
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Figure 70. Libfluid Responses/Switches by switches for Cbench latency mode
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Figure 71. Libfluid Responses/Switches by switches for Cbench throughput mode
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Figure 72. node-openflow Responses/Switches by switches for Cbench latency mode
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Figure 73. node-openflow Responses/Switches by switches for Cbench throughput
mode
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Figure 74. NOX Responses/Switches by switches for Cbench latency mode
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Figure 75. NOX Responses/Switches by switches for Cbench throughput mode
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Figure 76. ONOS Responses/Switches by switches for Cbench latency mode
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Figure 77. ONOS Responses/Switches by switches for Cbench throughput mode

●

●

●
●●

●
●
●●●

●
●
●●

●
●●
●●●●

●
●●●●

●●

●●
●

●●●

1,000

2,000

3,000

4,000

5,000

1 2 4 8 16 32 64 128

Number of simulated switches

R
es

po
ns

es
/S

w
itc

he
s

Figure 78. rxdn Responses/Switches by switches for Cbench latency mode
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Figure 79. rxdn Responses/Switches by switches for Cbench throughput mode
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Figure 80. Ryu Responses/Switches by switches for Cbench latency mode
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Figure 81. Ryu Responses/Switches by switches for Cbench throughput mode
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Figure 82. Trema Responses/Switches by switches for Cbench latency mode
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Figure 83. Trema Responses/Switches by switches for Cbench throughput mode

156



Appendix C. Cbench runner

The following is the source code for the start.ts file of Cbench runner, which

executes the tests with the specified containers and collects the results from the Cbench

program. This is discussed in Section 7.3.5.

1 import * as fs from "fs";

2 import * as yargs from "yargs";

3 import columnify = require (" columnify ");

4 import {safeLoad} from "js -yaml";

5 import {join} from "path";

6 import {create , start , wait , logs , remove , stop} from "./ docker ";

7

8 const argv = yargs

9 .usage ("Usage: node $0 [options ]")

10 .strict ()

11 .help("h")

12 .array (" switches ")

13 .number ([

14 "just",

15 "loops",

16 "mac -addresses",

17 "ms -per -test",

18 "switches",

19 ])

20 .alias ("a", "append ")

21 .alias ("f", "file")

22 .alias ("h", "help")

23 .alias ("j", "just")

24 .alias ("l", "loops ")

25 .alias ("M", "mac -addresses ")

26 .alias ("m", "ms-per -test")

27 .alias ("s", "switches ")

28 .alias ("t", "targets ")

29 .boolean (" append ")

30 .describe (" append", "Append results ")

31 .describe ("file", "File for results ")

32 .describe ("just", "Specify a single test to run")

33 .describe ("mac -addresses", "Unique source MAC addresses ")

34 .describe ("ms-per -test", "Test length in ms")

35 .describe ("loops", "Number of loops ")

36 .describe (" switches", "Numbers of switches ")

37 .describe (" targets", "YAML test specification ")

38 .default ("file", "results.csv")

39 .default ("loops", 37)

40 .default ("mac -addresses", 100000)

41 .default ("ms-per -test", 1000)

42 .default (" switches", [1, 2, 4, 8, 16, 32, 64, 128])

43 .default (" targets", "targets.yaml")
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44 .argv;

45

46 const switches: number [] = Array.isArray(argv.switches) ? argv.

switches : [argv.switches ];

47

48 let targets_file: string;

49 try {

50 targets_file = fs.readFileSync(join(__dirname , "..", argv.targets)

, "utf8");

51 } catch (error) {

52 console.error(`Error opening targets file ${argv.targets }: ${error
}`);

53 process.exit(-1);

54 }

55

56 const {targets} = safeLoad(targets_file);

57 const pause = 5;

58 const cbench_image = "dancasey/cbench -csv";

59

60 // If appending , need to read; else , just write

61 const header_mode = argv.append ? "r" : "wx";

62

63 // Run all , or just one? (Set number on command line)

64 let tests = targets;

65 if (argv.just !== undefined) tests = [targets[argv.just ]];

66

67 // If appending , read header; else , write header

68 let results: number;

69 try {

70 results = fs.openSync(argv.file , header_mode);

71 } catch (error) {

72 console.error(`Error opening file ${argv.file}: ${error}`);
73 process.exit(-1);

74 }

75

76 // If append mode , read header to find number of NAs; else write

header

77 let switchMax: number;

78 if (argv.append) {

79 let b = Buffer.alloc (2000);

80 fs.readSync(results , b, 0, 2000, 0);

81 let s = b.toString ().split ("\n")[0];

82 switchMax = parseInt(s.slice(s.lastIndexOf ("s") + 1), 10);

83 if (switchMax < Math.max (... switches)) {

84 console.error(`Error: ${argv.file} header max switches ${
switchMax} is less than s ${Math.max (... switches)}`);

85 console.error(`'NA' columns will not align; use a new results

file `);
86 process.exit(-1);

87 }

88 } else {

89 switchMax = Math.max (... switches);
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90 let header = "controller , mode , switches , warmup ";

91 for (let x = 1; x < switchMax + 1; x++) header += `, s${x}`;
92 header += "\n";

93 fs.writeSync(results , header);

94 }

95

96 // Re -open results as a writable stream

97 fs.closeSync(results);

98 const resultStream = fs.createWriteStream(argv.file , {flags: "a"});

99

100 // Show settings

101 console.log(`\nRunning cbench with -s {${switches }} -l ${argv.loops}
-m ${argv.m} -M ${argv.M}`);

102 if (argv.append) {

103 console.log(`Appending results to ${argv.file} with max switches $
{switchMax }\n`);

104 } else {

105 console.log(`Writing results to ${argv.file}\n`);
106 }

107 console.log(columnify(tests , {columnSplitter: " | "}));

108 console.log(`\ nContinuing in ${pause }... (ctrl -c to cancel) `);
109

110 // promisify timeout

111 const delay = (sec = 1) => new Promise <void >(res => setTimeout(res ,

sec * 1000));

112

113 async function runTests () {

114 await delay(pause);

115

116 // Run once for each mode

117 for (let mode = 0; mode < 2; mode ++) {

118 const modeName = mode === 1 ? "throughput" : "latency ";

119

120 for (let {name , image , port} of tests) {

121 for (let s of switches) {

122 console.log(`\ nStarting test ${name}, s = ${s}, ${modeName
}`);

123

124 // start controller container

125 let controller: string;

126 if (image) {

127 try {

128 controller = await create(image , false , null , null , name

);

129 await start(controller);

130 } catch (error) {

131 console.error(`Creating/starting controller image ${
image} failed :\n${error}`);

132 process.exit(-1);

133 }

134 // delay for controller set -up

135 await delay (2);
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136 }

137

138 // cbench arguments

139 let cbargs: string [] = [

140 "-c", name ,

141 "-p", port.toString (),

142 "-s", s.toString (),

143 "-l", argv.loops.toString (),

144 "-m", argv.m.toString (),

145 "-M", argv.M.toString (),

146 ];

147 if (mode === 1) {

148 cbargs.push("-t");

149 }

150

151 // run cbench , collect results

152 let cbench: string;

153 try {

154 cbench = await create(cbench_image , false , [name], cbargs)

;

155 await start(cbench);

156 } catch (error) {

157 console.error(`Creating/starting cbench image ${image}
failed :\n${error}`);

158 process.exit(-1);

159 }

160

161 // wait for cbench to finish

162 await wait(cbench);

163

164 // get cbench logs

165 let stdout: string;

166 try {

167 stdout = await logs(cbench);

168 } catch (error) {

169 console.error(`Failed to get cbench output :\n${error}`);
170 process.exit(-1);

171 }

172

173 // if no output , error

174 if (! stdout) {

175 // wait and try again

176 console.error(" Failed to get output: retry");

177 try {

178 await stop(cbench);

179 await delay (4);

180 await start(cbench);

181 await wait(cbench);

182 stdout = await logs(cbench);

183 } catch (error) {

184 console.error(" Failed twice to capture cbench output ");

185 process.exit(-1);
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186 }

187 }

188

189 // stop controller container , remove it and cbench

190 if (image) {

191 await stop(controller);

192 await remove(controller);

193 }

194 await remove(cbench);

195

196 // process output chunks

197 console.log(`Writing results for ${name}, s = ${s}, ${
modeName}`);

198 let lines = stdout.split ("\n");

199 for (let line of lines) {

200 // sanitize line

201 line = line.replace (/[^ -~]+/g, "");

202 if (line.length > 0) {

203 let str = `${name}, ${modeName}, ${line}`;
204 // add in required number of "NA" columns and then

newline

205 const NAcols = switchMax - s;

206 for (let x = 0; x < NAcols; x++) str += ", NA";

207 str += "\n";

208 resultStream.write(str);

209 }

210 }

211

212 await delay ();

213 }

214 }

215 }

216 // Close results file

217 resultStream.end();

218 }

219

220 runTests ();
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Appendix D. Cbench Patch

This patch for cbench.c changes stdout to a format consistent with CSV. The patch

can be applied with patch cbench.c < cbench.patch and then Cbench may be compiled

normally. This is discussed in Section 7.3.2.1.

1 52c52

2 < double run_test(int n_fakeswitches , struct fakeswitch *

fakeswitches , int mstestlen , int delay)

3 ---

4 > double run_test(int n_fakeswitches , struct fakeswitch *

fakeswitches , int mstestlen , int delay , int warmup)

5 83c83

6 < printf ("%02d:%02d:%02d.%03d %-3d switches: flows/sec: ",

tmNow ->tm_hour , tmNow ->tm_min , tmNow ->tm_sec , (int)(now.tv_usec

/1000) , n_fakeswitches);

7 ---

8 > printf ("%d, %d", n_fakeswitches , warmup);

9 88c88

10 < printf ("%d ", count);

11 ---

12 > printf(", %d", count);

13 90a91

14 > printf ("\n");

15 94d94

16 < printf (" total = %lf per ms \n", sum);

17 402 c402

18 < v = 1000.0 * run_test(i+1, fakeswitches , mstestlen ,

delay);

19 ---

20 > v = 1000.0 * run_test(i+1, fakeswitches , mstestlen ,

delay , j < warmup);

21 423 ,427c423 ,427

22 < printf (" RESULT: %d switches %d tests "

23 < "min/max/avg/stdev = %.2lf/%.2lf/%.2lf/%.2lf

responses/s\n",

24 < i+1,

25 < counted_tests ,

26 < min , max , avg , std_dev);

27 ---

28 > // printf (" RESULT: %d switches %d tests "

29 > // "min/max/avg/stdev = %.2lf/%.2lf/%.2lf/%.2lf

responses/s\n",

30 > // i+1,

31 > // counted_tests ,

32 > // min , max , avg , std_dev);
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Pre-test calculations

Calculate effect size, sample size
library(pwr)
cohen.ES(test = "anov", size = "medium")

##
## Conventional effect size from Cohen (1982)
##
## test = anov
## size = medium
## effect.size = 0.25
pwr.anova.test(k = 7, f = 0.25, sig.level = 0.05, power = 0.8)

##
## Balanced one-way analysis of variance power calculation
##
## k = 7
## n = 32.05196
## f = 0.25
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group

Import and arrange data

Import raw data
library(tidyverse)
raw_data <- read_csv("other_results.csv", col_types = cols(

controller = readr::col_factor(levels = c("rxdn","node-openflow","libfluid","ryu",
"onos","trema","nox")),

mode = readr::col_factor(levels = c("latency", "throughput")),
switches = readr::col_factor(levels = c(1, 2, 4, 8, 16, 32, 64, 128)),
warmup = readr::col_factor(levels = c(0, 1)
))) %>%
# exclude warmup observations and its column
filter(warmup == 0) %>%
select(-warmup)

Arrange data for analysis

• Sum up all switch responses per row: responses
• Divide ‘responses’ by ‘switches’: responses/switches

sums_raw <- rowSums(raw_data[, -1:-3], na.rm = TRUE)
summed_raw <- raw_data %>%

mutate(responses = sums_raw) %>%
select(-matches("s\\d{1,3}")) %>%
# add column that divides responses by switches
mutate('responses/switches' = responses / as.numeric(switches))

Results which include all controllers and numbers of switches

1

Appendix E. Controller Performance Analysis with R
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latency_all <- filter(summed_raw, mode == "latency") %>% select(-mode)
throughput_all <- filter(summed_raw, mode == "throughput") %>% select(-mode)

Results for just switches == 16
latency16 <- latency_all %>%

filter(switches == 16) %>%
select(-switches)

throughput16 <- throughput_all %>%
filter(switches == 16) %>%
select(-switches)

Boxplots

Full boxplot generation omitted; two examples given below

Generate boxplot for node-openflow, latency mode
ggplot(filter(latency_all, controller=="node-openflow"),

aes(switches, `responses/switches`)) +
labs(x = "Number of simulated switches", y = "Responses/Switches") +
scale_y_continuous(labels = scales::comma) +
geom_boxplot()

ggsave("node-openflow_boxes_lat_div.pdf")

Generate boxplot latency mode, faceted by controller, with x = switches and y = responses
ggplot(latency_all, aes(switches, responses)) +

facet_wrap(~ controller) +
labs(x = "Number of simulated switches", y = "Responses") +
scale_y_continuous(labels = scales::comma) +
geom_boxplot()

ggsave("all_boxes_lat.pdf")

Analysis for switches == 16

Summarise
latency16 %>%

group_by(controller) %>%
summarise(

mean = mean(responses),
median = median(responses),
sd = sd(responses),
n=n())

## # A tibble: 7 x 5
## controller mean median sd n
## <fctr> <dbl> <dbl> <dbl> <int>
## 1 rxdn 6543.22222 6562.0 77.05920 36
## 2 node-openflow 74455.08333 67802.5 20076.46781 36
## 3 libfluid 83798.05556 83638.5 745.45039 36
## 4 ryu 4730.58333 4707.5 64.20787 36
## 5 onos 69365.30556 69394.5 432.76822 36
## 6 trema 61.16667 61.0 2.00713 36
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## 7 nox 37779.19444 37954.5 890.92706 36
throughput16 %>%

group_by(controller) %>%
summarise(

mean = mean(responses),
median = median(responses),
sd = sd(responses),
n=n())

## # A tibble: 7 x 5
## controller mean median sd n
## <fctr> <dbl> <dbl> <dbl> <int>
## 1 rxdn 3274.94444 3364.5 695.683300 36
## 2 node-openflow 57823.08333 57858.5 8303.721181 36
## 3 libfluid 1300059.72222 1304894.0 12907.629707 36
## 4 ryu 7052.22222 7043.0 108.091525 36
## 5 onos 151178.66667 151932.0 3452.642524 36
## 6 trema 63.72222 63.5 2.679138 36
## 7 nox 139250.05556 140647.0 6481.411870 36

ANOVA Assumptions Checks

Check whether variance varies across groups - Levene’s test is non-significant if p > 0.05, which means
normal ANOVA is okay to use - If p < 0.05, must use Welch’s F or a robust version of ANOVA

For latency
library(car)

##
## Attaching package: 'car'

## The following object is masked from 'package:dplyr':
##
## recode

## The following object is masked from 'package:purrr':
##
## some
leveneTest(latency16$responses, latency16$controller, center = median)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 6 60.492 < 2.2e-16 ***
## 245
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For throughput
leveneTest(throughput16$responses, throughput16$controller, center = median)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 6 17.943 < 2.2e-16 ***
## 245
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, Discovering Statistics Using R note on page 440: > …in large samples even small differences
in variances might be deemed significant. As such, don’t place too much weight on Levene’s test if it’s
non-significant in a small sample, or significant in a large sample.

So plot to visualize:
qplot(sample = latency16$responses, geom="qq")
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From above it is clearly not normal. Must use robust methods.

Welch’s F

Welch’s F makes adjustments for differences in group variances.
oneway.test(responses ~ controller, latency16)

##
## One-way analysis of means (not assuming equal variances)
##
## data: responses and controller
## F = 303580, num df = 6.000, denom df = 93.386, p-value < 2.2e-16
oneway.test(responses ~ controller, throughput16)

##
## One-way analysis of means (not assuming equal variances)
##
## data: responses and controller
## F = 97135, num df = 6.000, denom df = 93.353, p-value < 2.2e-16

Results from above can be summarized (with adjusted degrees of freedom):

• Latency: Welch’s F(6, 93.384) = 314540, p << .0001
• Throughput: Welch’s F(6, 93.354) = 95704, p << .0001

Therefore, the mean response times differ significantly across different controllers.
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Robust pairwise post hoc tests

Again, use functions that do not assume heterscedastic data.

Source: Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.

• lincon() is based on trimmed means
• mcppb20() uses a percentile bootstrap to compute p-values as well as trimming the group means (this

is especially good at controlling Type I error rate)
library(WRS2)
lincon(responses ~ controller, latency16)

## Call:
## lincon(formula = responses ~ controller, data = latency16)
##
## psihat ci.lower ci.upper p.value
## rxdn vs. node-openflow -66050.500 -81628.031 -50472.969 0.00000
## rxdn vs. libfluid -77185.727 -77624.467 -76746.987 0.00000
## rxdn vs. ryu 1835.000 1791.364 1878.636 0.00000
## rxdn vs. onos -62844.682 -63085.076 -62604.288 0.00000
## rxdn vs. nox 6502.045 6494.176 6509.915 0.00000
## rxdn vs. trema -31389.091 -31603.740 -31174.441 0.00000
## node-openflow vs. libfluid -11135.227 -26716.030 4445.575 0.02417
## node-openflow vs. ryu 67885.500 52307.938 83463.062 0.00000
## node-openflow vs. onos 3205.818 -12372.693 18784.330 0.49183
## node-openflow vs. nox 72552.545 56975.016 88130.075 0.00000
## node-openflow vs. trema 34661.409 19083.097 50239.721 0.00000
## libfluid vs. ryu 79020.727 78580.886 79460.569 0.00000
## libfluid vs. onos 14341.045 13860.254 14821.837 0.00000
## libfluid vs. nox 83687.773 83249.068 84126.477 0.00000
## libfluid vs. trema 45796.636 45324.733 46268.539 0.00000
## ryu vs. onos -64679.682 -64922.124 -64437.240 0.00000
## ryu vs. nox 4667.045 4623.779 4710.312 0.00000
## ryu vs. trema -33224.091 -33441.049 -33007.133 0.00000
## onos vs. nox 69346.727 69106.398 69587.056 0.00000
## onos vs. trema 31455.591 31151.074 31760.108 0.00000
## nox vs. trema -37891.136 -38105.713 -37676.559 0.00000
lincon(responses ~ controller, throughput16)

## Call:
## lincon(formula = responses ~ controller, data = throughput16)
##
## psihat ci.lower ci.upper p.value
## rxdn vs. node-openflow -53987.545 -58515.752 -49459.339 0
## rxdn vs. libfluid -1300140.455 -1306513.115 -1293767.794 0
## rxdn vs. ryu -3636.682 -3991.006 -3282.358 0
## rxdn vs. onos -148339.909 -150260.403 -146419.416 0
## rxdn vs. nox 3342.136 2987.812 3696.461 0
## rxdn vs. trema -136379.318 -138713.567 -134045.069 0
## node-openflow vs. libfluid -1246152.909 -1253575.547 -1238730.271 0
## node-openflow vs. ryu 50350.864 45830.047 54871.681 0
## node-openflow vs. onos -94352.364 -99120.454 -89584.273 0
## node-openflow vs. nox 57329.682 52808.865 61850.499 0
## node-openflow vs. trema -82391.773 -87290.674 -77492.871 0
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## libfluid vs. ryu 1296503.773 1290136.345 1302871.201 0
## libfluid vs. onos 1151800.545 1145269.770 1158331.321 0
## libfluid vs. nox 1303482.591 1297115.163 1309850.019 0
## libfluid vs. trema 1163761.136 1157139.955 1170382.318 0
## ryu vs. onos -144703.227 -146605.761 -142800.694 0
## ryu vs. nox 6978.818 6976.978 6980.659 0
## ryu vs. trema -132742.636 -135062.282 -130422.991 0
## onos vs. nox 151682.045 149779.512 153584.579 0
## onos vs. trema 11960.591 9121.125 14800.057 0
## nox vs. trema -139721.455 -142041.100 -137401.809 0
library(WRS2)
mcppb20(responses ~ controller, latency16, nboot = 5000)

## Call:
## mcppb20(formula = responses ~ controller, data = latency16, nboot = 5000)
##
## psihat ci.lower ci.upper p-value
## rxdn vs. node-openflow -66050.500 -82063.591 -54125.091 0.0000
## rxdn vs. libfluid -77185.727 -77628.909 -76859.227 0.0000
## rxdn vs. ryu 1835.000 1791.591 1862.409 0.0000
## rxdn vs. onos -62844.682 -63043.409 -62616.500 0.0000
## rxdn vs. nox 6502.045 6481.818 6509.364 0.0000
## rxdn vs. trema -31389.091 -31562.045 -31201.682 0.0000
## node-openflow vs. libfluid -11135.227 -23041.545 4857.000 0.0152
## node-openflow vs. ryu 67885.500 55975.500 83903.955 0.0000
## node-openflow vs. onos 3205.818 -8741.545 19266.591 0.4640
## node-openflow vs. nox 72552.545 60626.227 88563.545 0.0000
## node-openflow vs. trema 34661.409 22710.727 50759.909 0.0000
## libfluid vs. ryu 79020.727 78690.136 79459.273 0.0000
## libfluid vs. onos 14341.045 13964.273 14854.409 0.0000
## libfluid vs. nox 83687.773 83360.636 84128.636 0.0000
## libfluid vs. trema 45796.636 45418.727 46258.955 0.0000
## ryu vs. onos -64679.682 -64882.864 -64447.727 0.0000
## ryu vs. nox 4667.045 4641.727 4704.273 0.0000
## ryu vs. trema -33224.091 -33397.955 -33030.045 0.0000
## onos vs. nox 69346.727 69120.273 69545.500 0.0000
## onos vs. trema 31455.591 31165.591 31744.636 0.0000
## nox vs. trema -37891.136 -38064.364 -37703.909 0.0000
mcppb20(responses ~ controller, throughput16, nboot = 5000)

## Call:
## mcppb20(formula = responses ~ controller, data = throughput16,
## nboot = 5000)
##
## psihat ci.lower ci.upper p-value
## rxdn vs. node-openflow -53987.545 -58203.864 -49597.955 0
## rxdn vs. libfluid -1300140.455 -1304072.136 -1292349.182 0
## rxdn vs. ryu -3636.682 -4033.455 -3344.682 0
## rxdn vs. onos -148339.909 -149974.045 -146105.773 0
## rxdn vs. nox 3342.136 2939.682 3633.864 0
## rxdn vs. trema -136379.318 -138905.545 -133903.227 0
## node-openflow vs. libfluid -1246152.909 -1252210.182 -1236716.273 0
## node-openflow vs. ryu 50350.864 45981.955 54527.636 0
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## node-openflow vs. onos -94352.364 -98835.500 -89563.682 0
## node-openflow vs. nox 57329.682 52958.136 61517.045 0
## node-openflow vs. trema -82391.773 -87786.364 -77724.455 0
## libfluid vs. ryu 1296503.773 1288731.455 1300382.864 0
## libfluid vs. onos 1151800.545 1143869.591 1156240.136 0
## libfluid vs. nox 1303482.591 1295696.000 1307361.318 0
## libfluid vs. trema 1163761.136 1155458.091 1168494.773 0
## ryu vs. onos -144703.227 -146282.455 -142328.500 0
## ryu vs. nox 6978.818 6956.182 7014.409 0
## ryu vs. trema -132742.636 -135354.909 -130228.864 0
## onos vs. nox 151682.045 149306.273 153261.318 0
## onos vs. trema 11960.591 8626.273 14606.045 0
## nox vs. trema -139721.455 -142333.500 -137207.227 0
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